ENGNN: A General Edge-Update Empowered GNN Architecture for Radio
Resource Management in Wireless Networks
- URL: http://arxiv.org/abs/2301.00757v1
- Date: Wed, 14 Dec 2022 14:04:25 GMT
- Title: ENGNN: A General Edge-Update Empowered GNN Architecture for Radio
Resource Management in Wireless Networks
- Authors: Yunqi Wang, Yang Li, Qingjiang Shi, Yik-Chung Wu
- Abstract summary: A key task is to efficiently manage the radio resource by judicious beamforming and power allocation.
We propose an edge-update mechanism, which enables GNNs to handle both node and edge variables.
The proposed method achieves higher sum rate but with much shorter time than state-of-the-art methods.
- Score: 29.23937571816269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to achieve high data rate and ubiquitous connectivity in future
wireless networks, a key task is to efficiently manage the radio resource by
judicious beamforming and power allocation. Unfortunately, the iterative nature
of the commonly applied optimization-based algorithms cannot meet the low
latency requirements due to the high computational complexity. For real-time
implementations, deep learning-based approaches, especially the graph neural
networks (GNNs), have been demonstrated with good scalability and
generalization performance due to the permutation equivariance (PE) property.
However, the current architectures are only equipped with the node-update
mechanism, which prohibits the applications to a more general setup, where the
unknown variables are also defined on the graph edges. To fill this gap, we
propose an edge-update mechanism, which enables GNNs to handle both node and
edge variables and prove its PE property with respect to both transmitters and
receivers. Simulation results on typical radio resource management problems
demonstrate that the proposed method achieves higher sum rate but with much
shorter computation time than state-of-the-art methods and generalizes well on
different numbers of base stations and users, different noise variances,
interference levels, and transmit power budgets.
Related papers
- Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
We propose an edge-graph-neural-network (Edge-GNN) to learn the cooperative beamforming on the graph edges.
The proposed Edge-GNN achieves higher sum rate with much shorter computation time than state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-23T02:05:06Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
We formulate a resilient radio resource management problem with per-user minimum-capacity constraints.
We show that we can parameterize the user selection and power control policies using a finite set of parameters.
Thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate.
arXiv Detail & Related papers (2022-03-07T19:40:39Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
We develop a novel graph sumable framework to maximize energy efficiency in wireless communication networks.
We show the permutation training which is a desirable property for models of wireless network data.
Results demonstrate its generalizability across different network topologies.
arXiv Detail & Related papers (2022-01-27T20:23:24Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies.
We apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.
arXiv Detail & Related papers (2021-05-02T12:43:10Z) - Graph Neural Networks for Scalable Radio Resource Management:
Architecture Design and Theoretical Analysis [31.372548374969387]
We propose to apply graph neural networks (GNNs) to solve large-scale radio resource management problems.
The proposed method is highly scalable and can solve the beamforming problem in an interference channel with $1000$ transceiver pairs within $6$ milliseconds on a single GPU.
arXiv Detail & Related papers (2020-07-15T11:43:32Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.