Multiscale Adaptive Conflict-Balancing Model For Multimedia Deepfake Detection
- URL: http://arxiv.org/abs/2505.12966v1
- Date: Mon, 19 May 2025 11:01:49 GMT
- Title: Multiscale Adaptive Conflict-Balancing Model For Multimedia Deepfake Detection
- Authors: Zihan Xiong, Xiaohua Wu, Lei Chen, Fangqi Lou,
- Abstract summary: multimodal detection methods remain limited by unbalanced learning between modalities.<n>We propose an Audio-Visual Joint Learning Method (MACB-DF) to better mitigate modality conflicts and neglect.<n>Our method exhibits superior cross-dataset generalization capabilities, with absolute improvements of 8.0% and 7.7% in ACC scores over the previous best-performing approach.
- Score: 4.849608823153888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in computer vision and deep learning have blurred the line between deepfakes and authentic media, undermining multimedia credibility through audio-visual forgery. Current multimodal detection methods remain limited by unbalanced learning between modalities. To tackle this issue, we propose an Audio-Visual Joint Learning Method (MACB-DF) to better mitigate modality conflicts and neglect by leveraging contrastive learning to assist in multi-level and cross-modal fusion, thereby fully balancing and exploiting information from each modality. Additionally, we designed an orthogonalization-multimodal pareto module that preserves unimodal information while addressing gradient conflicts in audio-video encoders caused by differing optimization targets of the loss functions. Extensive experiments and ablation studies conducted on mainstream deepfake datasets demonstrate consistent performance gains of our model across key evaluation metrics, achieving an average accuracy of 95.5% across multiple datasets. Notably, our method exhibits superior cross-dataset generalization capabilities, with absolute improvements of 8.0% and 7.7% in ACC scores over the previous best-performing approach when trained on DFDC and tested on DefakeAVMiT and FakeAVCeleb datasets.
Related papers
- Feature Fusion and Knowledge-Distilled Multi-Modal Multi-Target Detection [2.295863158976069]
We propose a feature fusion and knowledge-distilled framework for multi-modal MTD.<n>We formulate the problem as a posterior probability optimization task, which is solved through a multi-stage training pipeline.<n> Experimental results demonstrate that our student model achieves approximately 95% of the teacher model's mean Average Precision.
arXiv Detail & Related papers (2025-05-31T03:11:44Z) - AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection [57.649223695021114]
We present a novel weakly supervised framework that leverages audio-visual collaboration for robust video anomaly detection.<n>Our framework demonstrates superior performance across multiple benchmarks, with audio integration significantly boosting anomaly detection accuracy.
arXiv Detail & Related papers (2025-04-06T13:59:16Z) - DPU: Dynamic Prototype Updating for Multimodal Out-of-Distribution Detection [10.834698906236405]
Out-of-distribution (OOD) detection is essential for ensuring the robustness of machine learning models.
Recent advances in multimodal models have demonstrated the potential of leveraging multiple modalities to enhance detection performance.
We propose Dynamic Prototype Updating (DPU), a novel plug-and-play framework for multimodal OOD detection.
arXiv Detail & Related papers (2024-11-12T22:43:16Z) - Analytic Continual Test-Time Adaptation for Multi-Modality Corruption [23.545997349882857]
Test-Time Adaptation (TTA) aims to help pre-trained models bridge the gap between source and target datasets.
We propose a novel approach, Multi-modality Dynamic Analytic Adapter (MDAA) for MM-CTTA tasks.
MDAA achieves state-of-the-art performance on MM-CTTA while ensuring reliable model adaptation.
arXiv Detail & Related papers (2024-10-29T01:21:24Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Multimodal Imbalance-Aware Gradient Modulation for Weakly-supervised
Audio-Visual Video Parsing [107.031903351176]
Weakly-separated audio-visual video parsing (WS-AVVP) aims to localize the temporal extents of audio, visual and audio-visual event instances.
WS-AVVP aims to identify the corresponding event categories with only video-level category labels for training.
arXiv Detail & Related papers (2023-07-05T05:55:10Z) - Disentangled Multi-Fidelity Deep Bayesian Active Learning [19.031567953748453]
Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity.
Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity.
We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities.
arXiv Detail & Related papers (2023-05-07T23:14:58Z) - VERITE: A Robust Benchmark for Multimodal Misinformation Detection
Accounting for Unimodal Bias [17.107961913114778]
multimodal misinformation is a growing problem on social media platforms.
In this study, we investigate and identify the presence of unimodal bias in widely-used MMD benchmarks.
We introduce a new method -- termed Crossmodal HArd Synthetic MisAlignment (CHASMA) -- for generating realistic synthetic training data.
arXiv Detail & Related papers (2023-04-27T12:28:29Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL)
We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability.
Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time.
arXiv Detail & Related papers (2022-07-14T10:04:18Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.