Generative Modeling of Random Fields from Limited Data via Constrained Latent Flow Matching
- URL: http://arxiv.org/abs/2505.13007v1
- Date: Mon, 19 May 2025 11:47:44 GMT
- Title: Generative Modeling of Random Fields from Limited Data via Constrained Latent Flow Matching
- Authors: James E. Warner, Tristan A. Shah, Patrick E. Leser, Geoffrey F. Bomarito, Joshua D. Pribe, Michael C. Stanley,
- Abstract summary: Deep generative models are promising tools for science and engineering, but their reliance on abundant, high-quality data limits applicability.<n>We present a novel framework for generative modeling of random fields that incorporates domain knowledge to supplement limited, sparse, and indirect data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep generative models are promising tools for science and engineering, but their reliance on abundant, high-quality data limits applicability. We present a novel framework for generative modeling of random fields (probability distributions over continuous functions) that incorporates domain knowledge to supplement limited, sparse, and indirect data. The foundation of the approach is latent flow matching, where generative modeling occurs on compressed function representations in the latent space of a pre-trained variational autoencoder (VAE). Innovations include the adoption of a function decoder within the VAE and integration of physical/statistical constraints into the VAE training process. In this way, a latent function representation is learned that yields continuous random field samples satisfying domain-specific constraints when decoded, even in data-limited regimes. Efficacy is demonstrated on two challenging applications: wind velocity field reconstruction from sparse sensors and material property inference from a limited number of indirect measurements. Results show that the proposed framework achieves significant improvements in reconstruction accuracy compared to unconstrained methods and enables effective inference with relatively small training datasets that is intractable without constraints.
Related papers
- Stochastic and Non-local Closure Modeling for Nonlinear Dynamical Systems via Latent Score-based Generative Models [0.0]
We propose a latent score-based generative AI framework for learning, non-local closure models and laws in nonlinear dynamical systems.<n>This work addresses a key challenge of modeling complex multiscale dynamical systems without a clear scale separation.
arXiv Detail & Related papers (2025-06-25T19:04:02Z) - PIGPVAE: Physics-Informed Gaussian Process Variational Autoencoders [42.8983261737774]
We propose a novel generative model that learns from limited data by incorporating physical constraints to enhance performance.<n>We extend the VAE architecture by incorporating physical models in the generative process, enabling it to capture underlying dynamics more effectively.<n>We demonstrate that PIGPVAE can produce realistic samples beyond the observed distribution, highlighting its robustness and usefulness under distribution shifts.
arXiv Detail & Related papers (2025-05-25T21:12:01Z) - Constrained Discrete Diffusion [61.81569616239755]
This paper introduces Constrained Discrete Diffusion (CDD), a novel integration of differentiable constraint optimization within the diffusion process.<n>CDD directly imposes constraints into the discrete diffusion sampling process, resulting in a training-free and effective approach.
arXiv Detail & Related papers (2025-03-12T19:48:12Z) - Training-Free Constrained Generation With Stable Diffusion Models [45.138721047543214]
We propose a novel approach to integrate stable diffusion models with constrained optimization frameworks.<n>We demonstrate the effectiveness of this approach through material science experiments requiring adherence to precise morphometric properties.
arXiv Detail & Related papers (2025-02-08T16:11:17Z) - Gradient-Free Generation for Hard-Constrained Systems [41.558608119074755]
Existing constrained generative models rely heavily on gradient information, which is often sparse or computationally expensive in some fields.<n>We introduce a novel framework for adapting pre-trained, unconstrained flow-matching models to satisfy constraints exactly in a zero-shot manner.
arXiv Detail & Related papers (2024-12-02T18:36:26Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - FFHFlow: A Flow-based Variational Approach for Learning Diverse Dexterous Grasps with Shape-Aware Introspection [19.308304984645684]
We introduce a novel model that can generate diverse grasps for a multi-fingered hand.<n>The proposed idea gains superior performance and higher run-time efficiency against strong baselines.<n>We also demonstrate substantial benefits of greater diversity for grasping objects in clutter and a confined workspace in the real world.
arXiv Detail & Related papers (2024-07-21T13:33:08Z) - Physics-Informed Diffusion Models [0.0]
We present a framework that unifies generative modeling and partial differential equation fulfillment.<n>Our approach reduces the residual error by up to two orders of magnitude compared to previous work in a fluid flow case study.
arXiv Detail & Related papers (2024-03-21T13:52:55Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
This paper introduces an approach to generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles.
The proposed method recast the traditional process of generative diffusion as a constrained distribution problem to ensure adherence to constraints.
arXiv Detail & Related papers (2024-02-05T22:18:16Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.<n>This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.<n>We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.