Interpretable Robotic Friction Learning via Symbolic Regression
- URL: http://arxiv.org/abs/2505.13186v1
- Date: Mon, 19 May 2025 14:44:02 GMT
- Title: Interpretable Robotic Friction Learning via Symbolic Regression
- Authors: Philipp Scholl, Alexander Dietrich, Sebastian Wolf, Jinoh Lee, Alin-Albu Schäffer, Gitta Kutyniok, Maged Iskandar,
- Abstract summary: Accurately modeling the friction torque in robotic joints has long been challenging due to the request for a robust mathematical description.<n>Traditional model-based approaches are often labor-intensive, requiring extensive experiments and expert knowledge.<n>Data-driven methods based on neural networks are easier to implement but often lack robustness.
- Score: 52.41267112707149
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurately modeling the friction torque in robotic joints has long been challenging due to the request for a robust mathematical description. Traditional model-based approaches are often labor-intensive, requiring extensive experiments and expert knowledge, and they are difficult to adapt to new scenarios and dependencies. On the other hand, data-driven methods based on neural networks are easier to implement but often lack robustness, interpretability, and trustworthiness--key considerations for robotic hardware and safety-critical applications such as human-robot interaction. To address the limitations of both approaches, we propose the use of symbolic regression (SR) to estimate the friction torque. SR generates interpretable symbolic formulas similar to those produced by model-based methods while being flexible to accommodate various dynamic effects and dependencies. In this work, we apply SR algorithms to approximate the friction torque using collected data from a KUKA LWR-IV+ robot. Our results show that SR not only yields formulas with comparable complexity to model-based approaches but also achieves higher accuracy. Moreover, SR-derived formulas can be seamlessly extended to include load dependencies and other dynamic factors.
Related papers
- Learning Transferable Friction Models and LuGre Identification via Physics Informed Neural Networks [4.432363122731454]
We present a physics-informed friction estimation framework to integrate well-established friction models with learnable components.<n>Our approach enforces physical consistency yet retains the flexibility to adapt to real-world complexities.<n>We show that our approach enables the learned models to be transferable to systems they are not trained on.
arXiv Detail & Related papers (2025-04-16T19:15:48Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Probabilistic Latent Variable Modeling for Dynamic Friction Identification and Estimation [2.638878351659023]
Identification of dynamic models in robotics is essential to support control design, friction compensation, output torque estimation.<n>We propose to account for unidentified dynamics in the robot joints using latent dynamic states.<n>We use the Expectation-Maximisation (EM) algorithm to find a Likelihood Maximum Estimate (MLE) of the model parameters.
arXiv Detail & Related papers (2024-12-20T10:16:18Z) - Data Augmentation with Variational Autoencoder for Imbalanced Dataset [1.2289361708127877]
Learning from an imbalanced distribution presents a major challenge in predictive modeling.<n>We develop a novel approach for generating data, combining VAE with a smoothed bootstrap, specifically designed to address the challenges of IR.
arXiv Detail & Related papers (2024-12-09T22:59:03Z) - Learning-based adaption of robotic friction models [50.72489248401199]
We introduce a novel approach to adapt an existing friction model to new dynamics using as little data as possible.<n>Our method does not rely on data with external load during training, eliminating the need for external torque sensors.
arXiv Detail & Related papers (2023-10-25T14:50:15Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
imitation learning from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics.
Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence.
We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function.
arXiv Detail & Related papers (2021-06-23T03:43:10Z) - Action-Conditional Recurrent Kalman Networks For Forward and Inverse
Dynamics Learning [17.80270555749689]
Estimating accurate forward and inverse dynamics models is a crucial component of model-based control for robots.
We present two architectures for forward model learning and one for inverse model learning.
Both architectures significantly outperform exist-ing model learning frameworks as well as analytical models in terms of prediction performance.
arXiv Detail & Related papers (2020-10-20T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.