Efficient Generation of Parameterised Quantum Circuits from Large Texts
- URL: http://arxiv.org/abs/2505.13208v1
- Date: Mon, 19 May 2025 14:57:53 GMT
- Title: Efficient Generation of Parameterised Quantum Circuits from Large Texts
- Authors: Colin Krawchuk, Nikhil Khatri, Neil John Ortega, Dimitri Kartsaklis,
- Abstract summary: DisCoCirc is capable of directly encoding entire documents as parameterised quantum circuits (PQCs)<n>This paper introduces an efficient methodology for converting large-scale texts into quantum circuits using tree-like representations of pregroup diagrams.
- Score: 0.3298092151372303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum approaches to natural language processing (NLP) are redefining how linguistic information is represented and processed. While traditional hybrid quantum-classical models rely heavily on classical neural networks, recent advancements propose a novel framework, DisCoCirc, capable of directly encoding entire documents as parameterised quantum circuits (PQCs), besides enjoying some additional interpretability and compositionality benefits. Following these ideas, this paper introduces an efficient methodology for converting large-scale texts into quantum circuits using tree-like representations of pregroup diagrams. Exploiting the compositional parallels between language and quantum mechanics, grounded in symmetric monoidal categories, our approach enables faithful and efficient encoding of syntactic and discourse relationships in long and complex texts (up to 6410 words in our experiments) to quantum circuits. The developed system is provided to the community as part of the augmented open-source quantum NLP package lambeq Gen II.
Related papers
- Quantum-Accelerated Wireless Communications: Concepts, Connections, and Implications [59.0413662882849]
Quantum computing is poised to redefine the algorithmic foundations of communication systems.<n>This article outlines the fundamentals of quantum computing in a style familiar to the communications society.<n>We highlight a mathematical harmony between quantum and wireless systems, which makes the topic more enticing to wireless researchers.
arXiv Detail & Related papers (2025-06-25T22:25:47Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Multimodal Quantum Natural Language Processing: A Novel Framework for using Quantum Methods to Analyse Real Data [0.0]
This thesis explores how quantum computational methods can enhance the compositional modeling of language.
Specifically, it advances Multimodal Quantum Natural Language Processing (MQNLP) by applying the Lambeq toolkit.
Results indicate that syntax-based models, particularly DisCoCat and TreeReader, excel in effectively capturing grammatical structures.
arXiv Detail & Related papers (2024-10-29T19:03:43Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Algorithms for Compositional Text Processing [1.3654846342364308]
We focus on the recently proposed DisCoCirc framework for natural language, and propose a quantum adaptation, QDisCoCirc.
This is motivated by a compositional approach to rendering AI interpretable.
For the model-native primitive operation of text similarity, we derive quantum algorithms for fault-tolerant quantum computers.
arXiv Detail & Related papers (2024-08-12T11:21:40Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Toward Quantum Machine Translation of Syntactically Distinct Languages [0.0]
We explore the feasibility of language translation using quantum natural language processing algorithms on noisy intermediate-scale quantum (NISQ) devices.
We employ Shannon entropy to demonstrate the significant role of some appropriate angles of rotation gates in the performance of parametrized quantum circuits.
arXiv Detail & Related papers (2023-07-31T11:24:54Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
This work proposes a vertical federated learning architecture based on variational quantum circuits to demonstrate the competitive performance of a quantum-enhanced pre-trained BERT model for text classification.
Our experiments on intent classification show that our proposed BERT-QTC model attains competitive experimental results in the Snips and ATIS spoken language datasets.
arXiv Detail & Related papers (2022-02-17T09:55:21Z) - Foundations for Near-Term Quantum Natural Language Processing [0.17205106391379021]
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP)
We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure.
We provide references for supporting empirical evidence and formal statements concerning mathematical generality.
arXiv Detail & Related papers (2020-12-07T14:49:33Z) - Quantum Natural Language Processing on Near-Term Quantum Computers [0.0]
We describe a full-stack pipeline for natural language processing on near-term quantum computers, aka QNLP.
DisCoCat is a language-modelling framework that extends and complements the compositional structure of pregroup grammars.
We present a method for mapping DisCoCat diagrams to quantum circuits.
arXiv Detail & Related papers (2020-05-08T16:42:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.