Composing Dextrous Grasping and In-hand Manipulation via Scoring with a Reinforcement Learning Critic
- URL: http://arxiv.org/abs/2505.13253v1
- Date: Mon, 19 May 2025 15:36:34 GMT
- Title: Composing Dextrous Grasping and In-hand Manipulation via Scoring with a Reinforcement Learning Critic
- Authors: Lennart Röstel, Dominik Winkelbauer, Johannes Pitz, Leon Sievers, Berthold Bäuml,
- Abstract summary: In-hand manipulation and grasping are fundamental yet often separately addressed tasks in robotics.<n>We propose a method for bridging this gap by leveraging the critic network of a reinforcement learning agent trained for in-hand manipulation.<n>Our experiments show that this method significantly increases the success rate of in-hand manipulation without requiring additional training.
- Score: 7.759447374181355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-hand manipulation and grasping are fundamental yet often separately addressed tasks in robotics. For deriving in-hand manipulation policies, reinforcement learning has recently shown great success. However, the derived controllers are not yet useful in real-world scenarios because they often require a human operator to place the objects in suitable initial (grasping) states. Finding stable grasps that also promote the desired in-hand manipulation goal is an open problem. In this work, we propose a method for bridging this gap by leveraging the critic network of a reinforcement learning agent trained for in-hand manipulation to score and select initial grasps. Our experiments show that this method significantly increases the success rate of in-hand manipulation without requiring additional training. We also present an implementation of a full grasp manipulation pipeline on a real-world system, enabling autonomous grasping and reorientation even of unwieldy objects.
Related papers
- COMBO-Grasp: Learning Constraint-Based Manipulation for Bimanual Occluded Grasping [56.907940167333656]
Occluded robot grasping is where the desired grasp poses are kinematically infeasible due to environmental constraints such as surface collisions.<n>Traditional robot manipulation approaches struggle with the complexity of non-prehensile or bimanual strategies commonly used by humans.<n>We introduce Constraint-based Manipulation for Bimanual Occluded Grasping (COMBO-Grasp), a learning-based approach which leverages two coordinated policies.
arXiv Detail & Related papers (2025-02-12T01:31:01Z) - Towards Real-World Efficiency: Domain Randomization in Reinforcement Learning for Pre-Capture of Free-Floating Moving Targets by Autonomous Robots [0.0]
We introduce a deep reinforcement learning-based control approach to address the intricate challenge of the robotic pre-grasping phase under microgravity conditions.
Our methodology incorporates an off-policy reinforcement learning framework, employing the soft actor-critic technique to enable the gripper to proficiently approach a free-floating moving object.
For effective learning of the pre-grasping approach task, we developed a reward function that offers the agent clear and insightful feedback.
arXiv Detail & Related papers (2024-06-10T16:54:51Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Trajectory-based Reinforcement Learning of Non-prehensile Manipulation
Skills for Semi-Autonomous Teleoperation [18.782289957834475]
We present a semi-autonomous teleoperation framework for a pick-and-place task using an RGB-D sensor.
A trajectory-based reinforcement learning is utilized for learning the non-prehensile manipulation to rearrange the objects.
We show that the proposed method outperforms manual keyboard control in terms of the time duration for the grasping.
arXiv Detail & Related papers (2021-09-27T14:27:28Z) - On the Feasibility of Learning Finger-gaiting In-hand Manipulation with
Intrinsic Sensing [0.7373617024876725]
We use model-free reinforcement learning to learn finger-gaiting only via precision grasps.
To tackle the inherent instability of precision grasping, we propose the use of initial state distributions.
Our method can learn finger-gaiting with significantly improved sample complexity than the state-of-the-art.
arXiv Detail & Related papers (2021-09-26T23:22:29Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
We build a data collection system tailored to 6-DoF manipulation settings.
We develop an algorithm to train the policy iteratively on new data collected by the system.
We demonstrate that agents trained on data collected by our intervention-based system and algorithm outperform agents trained on an equivalent number of samples collected by non-interventional demonstrators.
arXiv Detail & Related papers (2020-12-12T05:30:35Z) - An Empowerment-based Solution to Robotic Manipulation Tasks with Sparse
Rewards [14.937474939057596]
It is important for robotic manipulators to learn to accomplish tasks even if they are only provided with very sparse instruction signals.
This paper proposes an intrinsic motivation approach that can be easily integrated into any standard reinforcement learning algorithm.
arXiv Detail & Related papers (2020-10-15T19:06:21Z) - Learning Dexterous Grasping with Object-Centric Visual Affordances [86.49357517864937]
Dexterous robotic hands are appealing for their agility and human-like morphology.
We introduce an approach for learning dexterous grasping.
Our key idea is to embed an object-centric visual affordance model within a deep reinforcement learning loop.
arXiv Detail & Related papers (2020-09-03T04:00:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.