Net-Zero: A Comparative Study on Neural Network Design for Climate-Economic PDEs Under Uncertainty
- URL: http://arxiv.org/abs/2505.13264v1
- Date: Mon, 19 May 2025 15:46:12 GMT
- Title: Net-Zero: A Comparative Study on Neural Network Design for Climate-Economic PDEs Under Uncertainty
- Authors: Carlos Rodriguez-Pardo, Louis Daumas, Leonardo Chiani, Massimo Tavoni,
- Abstract summary: We develop a continuous-time endogenous-growth economic model that accounts for multiple mitigation pathways.<n>We benchmark several neural network architectures against finite-difference generated solutions.<n>Our findings demonstrate that appropriate neural architecture selection significantly impacts both solution accuracy and computational efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Climate-economic modeling under uncertainty presents significant computational challenges that may limit policymakers' ability to address climate change effectively. This paper explores neural network-based approaches for solving high-dimensional optimal control problems arising from models that incorporate ambiguity aversion in climate mitigation decisions. We develop a continuous-time endogenous-growth economic model that accounts for multiple mitigation pathways, including emission-free capital and carbon intensity reductions. Given the inherent complexity and high dimensionality of these models, traditional numerical methods become computationally intractable. We benchmark several neural network architectures against finite-difference generated solutions, evaluating their ability to capture the dynamic interactions between uncertainty, technology transitions, and optimal climate policy. Our findings demonstrate that appropriate neural architecture selection significantly impacts both solution accuracy and computational efficiency when modeling climate-economic systems under uncertainty. These methodological advances enable more sophisticated modeling of climate policy decisions, allowing for better representation of technology transitions and uncertainty-critical elements for developing effective mitigation strategies in the face of climate change.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.<n>We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.<n>Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Crafting desirable climate trajectories with RL explored socio-environmental simulations [3.554161433683967]
Integrated Assessment Models (IAMs) combine social, economic, and environmental simulations to forecast potential policy effects.
Recent preliminary work using Reinforcement Learning (RL) to replace the traditional solvers shows promising results in decision making in uncertain and noisy scenarios.
We extend on this work by introducing multiple interacting RL agents as a preliminary analysis on modelling the complex interplay of socio-interactions between various stakeholders or nations.
arXiv Detail & Related papers (2024-10-09T13:21:50Z) - Dynamical-generative downscaling of climate model ensembles [13.376226374728917]
We propose a novel approach combining dynamical downscaling with generative artificial intelligence to reduce the cost and improve the uncertainty estimates of downscaled climate projections.
In our framework, an RCM dynamically downscales ESM output to an intermediate resolution, followed by a generative diffusion model that further refines the resolution to the target scale.
arXiv Detail & Related papers (2024-10-02T17:31:01Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
parameterizations are a major source of systematic errors and large uncertainties in climate projections.
Deep learning (DL)-based parameterizations, trained on data from computationally expensive short, high-resolution simulations, have shown great promise for improving climate models.
We propose an efficient supervised learning framework for DL-based parameterizations that leads to physically consistent models.
arXiv Detail & Related papers (2024-06-06T10:02:49Z) - Generative Adversarial Models for Extreme Geospatial Downscaling [0.0]
This paper describes a conditional GAN-based geospatial downscaling method that can accommodate very high scaling factors.
The method explicitly considers the uncertainty inherent to the downscaling process that tends to be ignored in existing methods.
It produces a multitude of plausible high-resolution samples instead of one single deterministic result.
arXiv Detail & Related papers (2024-02-21T18:25:04Z) - A Deep Learning Analysis of Climate Change, Innovation, and Uncertainty [1.8780554521958965]
We study the implications of model uncertainty in a climate-economics framework with three types of capital.
" dirty" capital that produces carbon emissions when used for production, "clean" capital that generates no emissions but is initially less productive.
We show there are first-order impacts of model uncertainty on optimal decisions and social valuations.
arXiv Detail & Related papers (2023-10-19T23:58:28Z) - AI For Global Climate Cooperation 2023 Competition Proceedings [77.07135605362795]
No global authority can ensure compliance with international climate agreements.
RICE-N supports modeling regional decision-making using AI agents.
The IAM then models the climate-economic impact of those decisions into the future.
arXiv Detail & Related papers (2023-07-10T20:05:42Z) - Maximum entropy exploration in contextual bandits with neural networks
and energy based models [63.872634680339644]
We present two classes of models, one with neural networks as reward estimators, and the other with energy based models.
We show that both techniques outperform well-known standard algorithms, where energy based models have the best overall performance.
This provides practitioners with new techniques that perform well in static and dynamic settings, and are particularly well suited to non-linear scenarios with continuous action spaces.
arXiv Detail & Related papers (2022-10-12T15:09:45Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
We present auxiliary informed-temporal neural architecture for statistical downscaling.
Current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India.
arXiv Detail & Related papers (2020-09-23T17:52:09Z) - Multi-objective Optimal Control of Dynamic Integrated Model of Climate
and Economy: Evolution in Action [0.8756822885568589]
One of the widely used models for studying economics of climate change is the Dynamic Integrated model of Climate and Economy (DICE)
In this paper, a bi-objective optimal control problem defined on DICE model, objectives of which are maximizing social welfare and minimizing the temperature deviation of atmosphere.
Results show that temperature deviation cannot go below a certain lower limit, unless we have significant technology advancement or positive change in global conditions.
arXiv Detail & Related papers (2020-06-29T20:41:34Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.