論文の概要: Measuring Social Influence with Networked Synthetic Control
- arxiv url: http://arxiv.org/abs/2505.13334v1
- Date: Mon, 19 May 2025 16:44:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.743661
- Title: Measuring Social Influence with Networked Synthetic Control
- Title(参考訳): ネットワーク型合成制御による社会的影響の測定
- Authors: Ho-Chun Herbert Chang,
- Abstract要約: 対実と比較の欠如により、社会的影響の測定は困難である。
合成制御を用いた社会的影響力の最近の尺度である社会的価値の一般的な性質について述べる。
どんなアンサンブルモデルでも計算の削減が達成できる。
- 参考スコア(独自算出の注目度): 2.5835347022640254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Measuring social influence is difficult due to the lack of counter-factuals and comparisons. By combining machine learning-based modeling and network science, we present general properties of social value, a recent measure for social influence using synthetic control applicable to political behavior. Social value diverges from centrality measures on in that it relies on an external regressor to predict an output variable of interest, generates a synthetic measure of influence, then distributes individual contribution based on a social network. Through theoretical derivations, we show the properties of SV under linear regression with and without interaction, across lattice networks, power-law networks, and random graphs. A reduction in computation can be achieved for any ensemble model. Through simulation, we find that the generalized friendship paradox holds -- that in certain situations, your friends have on average more influence than you do.
- Abstract(参考訳): 対実と比較の欠如により、社会的影響の測定は困難である。
機械学習に基づくモデリングとネットワーク科学を組み合わせることで、社会的価値の一般的な性質を示す。
社会的価値は、関心の出力変数を予測するために外部回帰器を頼り、影響力の合成尺度を生成し、ソーシャルネットワークに基づいて個々の貢献を分配するという中央値から分岐する。
理論的な導出を通じて、格子ネットワーク、パワー・ロー・ネットワーク、ランダムグラフをまたいだ相互作用と相互作用のない線形回帰の下でのSVの特性を示す。
どんなアンサンブルモデルでも計算の削減が達成できる。
シミュレーションを通して、一般化された友情のパラドックスは -- ある状況では、あなたの友人はあなたよりも平均的な影響力を持つ。
関連論文リスト
- SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
本稿では,社会シミュレーションのためのエージェント駆動世界モデルであるSocioVerseを紹介する。
私たちのフレームワークは、4つの強力なアライメントコンポーネントと1000万の実際の個人からなるユーザプールを備えています。
SocioVerseは、多様性、信頼性、代表性を確保しつつ、大規模な人口動態を反映できることを示した。
論文 参考訳(メタデータ) (2025-04-14T12:12:52Z) - Contrastive Learning Augmented Social Recommendations [9.20712944489791]
本稿では,行動データから得られた関心表現を補完するために,再構成されたソーシャルグラフを活用することを提案する。
コンテンツプラットフォーム上でのソーシャルグラフの普及にもかかわらず、そのユーティリティはソーシャルリレーショナルノイズによって妨げられている。
本稿では,グラフデータにおけるノイズ伝搬を緩和し,信頼性の高い社会的関心を抽出するための2視点デノベーションフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-03T16:29:51Z) - Adversarial Socialbots Modeling Based on Structural Information
Principles [24.339397435628214]
ソーシャルボットは、誤情報を伝達するために人間の行動を模倣し、ソーシャルボットと検出器の競争が続いている。
本稿では,より正確かつ効果的な対人行動モデリングを実現するために,数学的構造情報原理に基づく対人社会ボットモデリングフレームワーク,すなわちSIASMを提案する。
論文 参考訳(メタデータ) (2023-12-13T12:32:12Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Estimating Social Influence from Observational Data [5.156484100374057]
本研究では,社会的影響を推定する問題,個人の行動が将来の仲間の行動に与える影響を考察する。
鍵となる課題は、友人間の共有行動は、影響または他の2つの要因によって等しく説明できることである。
本稿では,3つの貢献によって社会的影響を推定する上での課題について論じる。
論文 参考訳(メタデータ) (2022-03-24T20:21:24Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
ソーシャルソフトアテンショングラフ畳み込みネットワーク(SSAGCN)という新しい予測モデルを提案する。
SSAGCNは、歩行者間の社会的相互作用と歩行者と環境間のシーンインタラクションを同時に扱うことを目的としている。
公開データセットの実験は、SAGCNの有効性を証明し、最先端の結果を得た。
論文 参考訳(メタデータ) (2021-12-05T01:49:18Z) - Conductance and Social Capital: Modeling and Empirically Measuring
Online Social Influence [9.556358888163983]
社会的影響は私たちの日常生活に浸透し、複雑な社会現象の基礎を築いた。
オンライン社会的影響を研究する既存の文献は、いくつかの欠点に悩まされている。
この研究はギャップを埋め、モデリングとオンライン影響の実証的な定量化に3つの貢献をする。
論文 参考訳(メタデータ) (2021-10-25T01:05:49Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z) - A Simulation Model Demonstrating the Impact of Social Aspects on Social
Internet of Things [0.0]
本稿では,社会的行動が社会的対象の相互作用パターンに及ぼす影響について考察する。
本稿では,競争的社会パラダイムと協調的社会パラダイムの関係について考察する。
協調戦略は競争戦略よりも効率的であることが証明された。
論文 参考訳(メタデータ) (2020-02-23T07:18:39Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。