Investigating the Vulnerability of LLM-as-a-Judge Architectures to Prompt-Injection Attacks
- URL: http://arxiv.org/abs/2505.13348v1
- Date: Mon, 19 May 2025 16:51:12 GMT
- Title: Investigating the Vulnerability of LLM-as-a-Judge Architectures to Prompt-Injection Attacks
- Authors: Narek Maloyan, Bislan Ashinov, Dmitry Namiot,
- Abstract summary: Large Language Models (LLMs) are increasingly employed as evaluators (LLM-as-a-Judge) for assessing the quality of machine-generated text.<n>This paper investigates the vulnerability of LLM-as-a-Judge architectures to prompt-injection attacks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly employed as evaluators (LLM-as-a-Judge) for assessing the quality of machine-generated text. This paradigm offers scalability and cost-effectiveness compared to human annotation. However, the reliability and security of such systems, particularly their robustness against adversarial manipulations, remain critical concerns. This paper investigates the vulnerability of LLM-as-a-Judge architectures to prompt-injection attacks, where malicious inputs are designed to compromise the judge's decision-making process. We formalize two primary attack strategies: Comparative Undermining Attack (CUA), which directly targets the final decision output, and Justification Manipulation Attack (JMA), which aims to alter the model's generated reasoning. Using the Greedy Coordinate Gradient (GCG) optimization method, we craft adversarial suffixes appended to one of the responses being compared. Experiments conducted on the MT-Bench Human Judgments dataset with open-source instruction-tuned LLMs (Qwen2.5-3B-Instruct and Falcon3-3B-Instruct) demonstrate significant susceptibility. The CUA achieves an Attack Success Rate (ASR) exceeding 30\%, while JMA also shows notable effectiveness. These findings highlight substantial vulnerabilities in current LLM-as-a-Judge systems, underscoring the need for robust defense mechanisms and further research into adversarial evaluation and trustworthiness in LLM-based assessment frameworks.
Related papers
- Reasoning Models Can be Easily Hacked by Fake Reasoning Bias [59.79548223686273]
We introduce THEATER, a comprehensive benchmark to evaluate Reasoning Theater Bias (RTB)<n>We investigate six bias types including Simple Cues and Fake Chain-of-Thought.<n>We identify'shallow reasoning'-plausible but flawed arguments-as the most potent form of RTB.
arXiv Detail & Related papers (2025-07-18T09:06:10Z) - Bridging AI and Software Security: A Comparative Vulnerability Assessment of LLM Agent Deployment Paradigms [1.03121181235382]
Large Language Model (LLM) agents face security vulnerabilities spanning AI-specific and traditional software domains.<n>This study bridges this gap through comparative evaluation of Function Calling architecture and Model Context Protocol (MCP) deployment paradigms.<n>We tested 3,250 attack scenarios across seven language models, evaluating simple, composed, and chained attacks targeting both AI-specific threats and software vulnerabilities.
arXiv Detail & Related papers (2025-07-08T18:24:28Z) - LLMs Cannot Reliably Judge (Yet?): A Comprehensive Assessment on the Robustness of LLM-as-a-Judge [44.6358611761225]
Large Language Models (LLMs) have demonstrated remarkable intelligence across various tasks.<n>These systems are susceptible to adversarial attacks that can manipulate evaluation outcomes.<n>Existing evaluation methods adopted by LLM-based judges are often piecemeal and lack a unified framework for comprehensive assessment.
arXiv Detail & Related papers (2025-06-11T06:48:57Z) - LLM-Safety Evaluations Lack Robustness [58.334290876531036]
We argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise.<n>We propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers.
arXiv Detail & Related papers (2025-03-04T12:55:07Z) - Model Tampering Attacks Enable More Rigorous Evaluations of LLM Capabilities [49.09703018511403]
Evaluations of large language model (LLM) risks and capabilities are increasingly being incorporated into AI risk management and governance frameworks.<n>Currently, most risk evaluations are conducted by designing inputs that elicit harmful behaviors from the system.<n>We propose evaluating LLMs with model tampering attacks which allow for modifications to latent activations or weights.
arXiv Detail & Related papers (2025-02-03T18:59:16Z) - TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation [31.231916859341865]
TrustRAG is a framework that systematically filters malicious and irrelevant content before it is retrieved for generation.<n>TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance.
arXiv Detail & Related papers (2025-01-01T15:57:34Z) - Robustness of Large Language Models Against Adversarial Attacks [5.312946761836463]
We present a comprehensive study on the robustness of GPT LLM family.<n>We employ two distinct evaluation methods to assess their resilience.<n>Our experiments reveal significant variations in the robustness of these models, demonstrating their varying degrees of vulnerability to both character-level and semantic-level adversarial attacks.
arXiv Detail & Related papers (2024-12-22T13:21:15Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
AI agents, powered by large language models (LLMs), have transformed human-computer interactions by enabling seamless, natural, and context-aware communication.<n>This paper investigates a critical vulnerability: adversarial attacks targeting the LLM core within AI agents.
arXiv Detail & Related papers (2024-12-05T18:38:30Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
Large Language Models (LLMs) are becoming increasingly powerful, but they still exhibit significant but subtle weaknesses.<n>Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies.<n>We introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks.
arXiv Detail & Related papers (2024-06-24T15:16:45Z) - Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
Large Language Models (LLMs) have shown significant promise in real-world decision-making tasks for embodied AI.<n>LLMs are fine-tuned to leverage their inherent common sense and reasoning abilities while being tailored to specific applications.<n>This fine-tuning process introduces considerable safety and security vulnerabilities, especially in safety-critical cyber-physical systems.
arXiv Detail & Related papers (2024-05-27T17:59:43Z) - Optimization-based Prompt Injection Attack to LLM-as-a-Judge [78.20257854455562]
LLM-as-a-Judge uses a large language model (LLM) to select the best response from a set of candidates for a given question.<n>We propose JudgeDeceiver, an optimization-based prompt injection attack to LLM-as-a-Judge.<n>Our evaluation shows that JudgeDeceive is highly effective, and is much more effective than existing prompt injection attacks.
arXiv Detail & Related papers (2024-03-26T13:58:00Z) - A Novel Evaluation Framework for Assessing Resilience Against Prompt Injection Attacks in Large Language Models [0.0]
This study introduces a novel framework for quantifying the resilience of applications.
The framework incorporates innovative techniques designed to ensure representativeness, interpretability, and robustness.
Results revealed that Llama2, the newer model exhibited higher resilience compared to ChatGLM.
arXiv Detail & Related papers (2024-01-02T02:06:48Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.