Bridging AI and Software Security: A Comparative Vulnerability Assessment of LLM Agent Deployment Paradigms
- URL: http://arxiv.org/abs/2507.06323v1
- Date: Tue, 08 Jul 2025 18:24:28 GMT
- Title: Bridging AI and Software Security: A Comparative Vulnerability Assessment of LLM Agent Deployment Paradigms
- Authors: Tarek Gasmi, Ramzi Guesmi, Ines Belhadj, Jihene Bennaceur,
- Abstract summary: Large Language Model (LLM) agents face security vulnerabilities spanning AI-specific and traditional software domains.<n>This study bridges this gap through comparative evaluation of Function Calling architecture and Model Context Protocol (MCP) deployment paradigms.<n>We tested 3,250 attack scenarios across seven language models, evaluating simple, composed, and chained attacks targeting both AI-specific threats and software vulnerabilities.
- Score: 1.03121181235382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Model (LLM) agents face security vulnerabilities spanning AI-specific and traditional software domains, yet current research addresses these separately. This study bridges this gap through comparative evaluation of Function Calling architecture and Model Context Protocol (MCP) deployment paradigms using a unified threat classification framework. We tested 3,250 attack scenarios across seven language models, evaluating simple, composed, and chained attacks targeting both AI-specific threats (prompt injection) and software vulnerabilities (JSON injection, denial-of-service). Function Calling showed higher overall attack success rates (73.5% vs 62.59% for MCP), with greater system-centric vulnerability while MCP exhibited increased LLM-centric exposure. Attack complexity dramatically amplified effectiveness, with chained attacks achieving 91-96% success rates. Counterintuitively, advanced reasoning models demonstrated higher exploitability despite better threat detection. Results demonstrate that architectural choices fundamentally reshape threat landscapes. This work establishes methodological foundations for cross-domain LLM agent security assessment and provides evidence-based guidance for secure deployment. Code and experimental materials are available at https: // github. com/ theconsciouslab-ai/llm-agent-security.
Related papers
- OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - ATAG: AI-Agent Application Threat Assessment with Attack Graphs [23.757154032523093]
This paper introduces AI-agent application Threat assessment with Attack Graphs (ATAG)<n>ATAG is a novel framework designed to systematically analyze the security risks associated with AI-agent applications.<n>It facilitates proactive identification and mitigation of AI-agent threats in multi-agent applications.
arXiv Detail & Related papers (2025-06-03T13:25:40Z) - Investigating the Vulnerability of LLM-as-a-Judge Architectures to Prompt-Injection Attacks [0.0]
Large Language Models (LLMs) are increasingly employed as evaluators (LLM-as-a-Judge) for assessing the quality of machine-generated text.<n>This paper investigates the vulnerability of LLM-as-a-Judge architectures to prompt-injection attacks.
arXiv Detail & Related papers (2025-05-19T16:51:12Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentVigil, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLM is a cooperative multi-agent defense against adversarial attacks and information leakage.<n>We show that scaling agentic reasoning system at test-time substantially enhances robustness without compromising model utility.<n> Comprehensive evaluations across key threat scenarios, including unlearning and jailbreaking, demonstrate the effectiveness of AegisLLM.
arXiv Detail & Related papers (2025-04-29T17:36:05Z) - DoomArena: A framework for Testing AI Agents Against Evolving Security Threats [84.94654617852322]
We present DoomArena, a security evaluation framework for AI agents.<n>It is a plug-in framework and integrates easily into realistic agentic frameworks.<n>It is modular and decouples the development of attacks from details of the environment in which the agent is deployed.
arXiv Detail & Related papers (2025-04-18T20:36:10Z) - SafeMLRM: Demystifying Safety in Multi-modal Large Reasoning Models [50.34706204154244]
Acquiring reasoning capabilities catastrophically degrades inherited safety alignment.<n>Certain scenarios suffer 25 times higher attack rates.<n>Despite tight reasoning-answer safety coupling, MLRMs demonstrate nascent self-correction.
arXiv Detail & Related papers (2025-04-09T06:53:23Z) - Benchmarking LLMs and LLM-based Agents in Practical Vulnerability Detection for Code Repositories [8.583591493627276]
We introduce JitVul, a vulnerability detection benchmark linking each function to its vulnerability-introducing and fixing commits.<n>We show that ReAct Agents, leveraging thought-action-observation and interprocedural context, perform better than LLMs in distinguishing vulnerable from benign code.
arXiv Detail & Related papers (2025-03-05T15:22:24Z) - Why Are Web AI Agents More Vulnerable Than Standalone LLMs? A Security Analysis [35.57217841344101]
This study investigates the underlying factors that contribute to the increased vulnerability of Web AI agents.<n>We identify three critical factors that amplify the vulnerability of Web AI agents; (1) embedding user goals into the system prompt, (2) multi-step action generation, and (3) observational capabilities.
arXiv Detail & Related papers (2025-02-27T18:56:26Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [8.345554966569479]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.<n>Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.<n>This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.