Noise Injection Systemically Degrades Large Language Model Safety Guardrails
- URL: http://arxiv.org/abs/2505.13500v1
- Date: Fri, 16 May 2025 01:33:25 GMT
- Title: Noise Injection Systemically Degrades Large Language Model Safety Guardrails
- Authors: Prithviraj Singh Shahani, Matthias Scheutz,
- Abstract summary: Safety guardrails in large language models (LLMs) are a critical component in preventing harmful outputs.<n>In this paper, we investigate the robustness of safety fine-tuning in LLMs by systematically injecting noise into model activations.
- Score: 6.841549440317724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety guardrails in large language models (LLMs) are a critical component in preventing harmful outputs. Yet, their resilience under perturbation remains poorly understood. In this paper, we investigate the robustness of safety fine-tuning in LLMs by systematically injecting Gaussian noise into model activations. We show across multiple open-weight models that (1) Gaussian noise raises harmful-output rates (p < 0.001) by up to 27%, (2) that deeper safety fine-tuning affords no extra protection, and (3) that chain-of-thought reasoning remains largely intact. The findings reveal critical vulnerabilities in current safety alignment techniques and highlight the potential of reasoning-based and reinforcement learning approaches as promising direction for developing more robust AI safety systems. These results have important implications for real-world deployment of LLMs in safety-critical applications as these results imply that widely-deployed safety tuning methods can fail even without adversarial prompts.
Related papers
- Should LLM Safety Be More Than Refusing Harmful Instructions? [6.5137518437747]
This paper presents a systematic evaluation of Large Language Models' (LLMs) behavior on long-tail distributed (encrypted) texts.<n>We introduce a two-dimensional framework for assessing LLM safety.<n>We demonstrate that models that possess capabilities to decrypt ciphers may be susceptible to mismatched-generalization attacks.
arXiv Detail & Related papers (2025-06-03T05:00:12Z) - Shape it Up! Restoring LLM Safety during Finetuning [66.46166656543761]
Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks.<n>We propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content.<n>We present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families.
arXiv Detail & Related papers (2025-05-22T18:05:16Z) - SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning [76.56522719330911]
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering.<n>LRMs pose great safety risks against harmful queries and adversarial attacks.<n>We propose SafeKey to better activate the safety aha moment in the key sentence.
arXiv Detail & Related papers (2025-05-22T03:46:03Z) - Safety Alignment Can Be Not Superficial With Explicit Safety Signals [8.297367440457508]
Recent studies on the safety alignment of large language models (LLMs) have revealed that existing approaches often operate superficially.<n>This paper identifies a fundamental cause of this superficiality: existing alignment approaches presume that models can implicitly learn a safety-related reasoning task during the alignment process.<n>By explicitly introducing a safety-related binary classification task and integrating its signals with our attention and decoding strategies, we eliminate this ambiguity.
arXiv Detail & Related papers (2025-05-19T20:40:46Z) - Representation Bending for Large Language Model Safety [27.842146980762934]
Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks pose significant challenges.<n>This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs.<n>RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates.
arXiv Detail & Related papers (2025-04-02T09:47:01Z) - Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
Safety alignment is an essential research topic for real-world AI applications.<n>Our study first identified the difficulty of eliminating such vulnerabilities without sacrificing the model's helpfulness.<n>Our method could enhance the model's helpfulness while maintaining safety, thus improving the trade-off-front.
arXiv Detail & Related papers (2025-02-04T09:31:54Z) - Internal Activation as the Polar Star for Steering Unsafe LLM Behavior [50.463399903987245]
We introduce SafeSwitch, a framework that dynamically regulates unsafe outputs by monitoring and utilizing the model's internal states.<n>Our empirical results show that SafeSwitch reduces harmful outputs by over 80% on safety benchmarks while maintaining strong utility.
arXiv Detail & Related papers (2025-02-03T04:23:33Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large Language Models (LLMs) to defend threats from malicious instructions.<n>Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.<n>We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.<n>DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence.
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching [74.62818936088065]
textscSafePatching is a novel framework for comprehensive PSA.<n>textscSafePatching achieves a more comprehensive PSA than baseline methods.<n>textscSafePatching demonstrates its superiority in continual PSA scenarios.
arXiv Detail & Related papers (2024-05-22T16:51:07Z) - Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications [69.13807233595455]
Large language models (LLMs) show inherent brittleness in their safety mechanisms.
This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications.
We show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted.
arXiv Detail & Related papers (2024-02-07T18:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.