論文の概要: LLM-Based User Simulation for Low-Knowledge Shilling Attacks on Recommender Systems
- arxiv url: http://arxiv.org/abs/2505.13528v1
- Date: Sun, 18 May 2025 04:40:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.370417
- Title: LLM-Based User Simulation for Low-Knowledge Shilling Attacks on Recommender Systems
- Title(参考訳): LLMによるレコメンダシステムにおける低知識シリング攻撃のシミュレーション
- Authors: Shengkang Gu, Jiahao Liu, Dongsheng Li, Guangping Zhang, Mingzhe Han, Hansu Gu, Peng Zhang, Ning Gu, Li Shang, Tun Lu,
- Abstract要約: 我々は,Large Language Model(LLM)ベースのエージェントを利用して,低知識かつ高インパクトなシリング攻撃を行う新しいフレームワークであるAgent4SRを紹介する。
Agent4SRは、対向的なインタラクションを編成し、アイテムを選択し、評価を割り当て、レビューを作成し、行動の妥当性を維持しながら、現実的なユーザ動作をシミュレートする。
以上の結果から,レコメンデーションシステムにおける防衛強化の必要性を浮き彫りにして,LSMを駆使したエージェントによる新たな緊急脅威の出現が示唆された。
- 参考スコア(独自算出の注目度): 28.559223475725137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems (RS) are increasingly vulnerable to shilling attacks, where adversaries inject fake user profiles to manipulate system outputs. Traditional attack strategies often rely on simplistic heuristics, require access to internal RS data, and overlook the manipulation potential of textual reviews. In this work, we introduce Agent4SR, a novel framework that leverages Large Language Model (LLM)-based agents to perform low-knowledge, high-impact shilling attacks through both rating and review generation. Agent4SR simulates realistic user behavior by orchestrating adversarial interactions, selecting items, assigning ratings, and crafting reviews, while maintaining behavioral plausibility. Our design includes targeted profile construction, hybrid memory retrieval, and a review attack strategy that propagates target item features across unrelated reviews to amplify manipulation. Extensive experiments on multiple datasets and RS architectures demonstrate that Agent4SR outperforms existing low-knowledge baselines in both effectiveness and stealth. Our findings reveal a new class of emergent threats posed by LLM-driven agents, underscoring the urgent need for enhanced defenses in modern recommender systems.
- Abstract(参考訳): Recommender System (RS) は、敵がシステム出力を操作するために偽のユーザープロファイルを注入する攻撃に対して、ますます脆弱になっている。
従来の攻撃戦略は、単純なヒューリスティックに頼り、内部RSデータへのアクセスを必要とし、テキストレビューの操作可能性を見落としている。
本稿では,Large Language Model(LLM)ベースのエージェントを利用して,評価とレビュー生成の両方を通じて,低知識かつ高インパクトなシリング攻撃を行う新しいフレームワークであるAgent4SRを紹介する。
Agent4SRは、対向的なインタラクションを編成し、アイテムを選択し、評価を割り当て、レビューを作成し、行動の妥当性を維持しながら、現実的なユーザ動作をシミュレートする。
我々の設計には、ターゲットプロファイルの構築、ハイブリッドメモリ検索、非関連レビュー間でターゲットアイテムの特徴を伝播して操作を増幅するレビューアタック戦略が含まれる。
複数のデータセットとRSアーキテクチャに関する大規模な実験は、Agent4SRが既存の低知識ベースラインを、有効性とステルスの両方で上回ることを示した。
以上の結果から, 現代のレコメンデーターシステムにおける防衛強化の必要性を浮き彫りにして, LLMを駆使したエージェントによる緊急脅威の新たな類型が明らかとなった。
関連論文リスト
- CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent [32.958798200220286]
大言語モデル(LLM)を利用したレコメンデーションシステム(RecSys)は、パーソナライズされたユーザーエクスペリエンスに大きな進歩をもたらした。
LLMの人間的な能力を活用して、CheatAgentと呼ばれる新たな攻撃フレームワークを提案する。
提案手法は,入力修正の最小化による最大衝撃に対する挿入位置をまず同定する。
論文 参考訳(メタデータ) (2025-04-13T05:31:37Z) - FlippedRAG: Black-Box Opinion Manipulation Adversarial Attacks to Retrieval-Augmented Generation Models [22.35026334463735]
我々は、ブラックボックスRAGシステムに対するトランスファーベースの敵攻撃であるFlippedRAGを提案する。
FlippedRAGは、RAG生成反応の意見において平均50%の方向シフトを達成する。
これらの結果は、RAGシステムのセキュリティと信頼性を確保するために革新的な防衛ソリューションを開発する緊急の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-01-06T12:24:57Z) - Towards More Robust Retrieval-Augmented Generation: Evaluating RAG Under Adversarial Poisoning Attacks [45.07581174558107]
Retrieval-Augmented Generation (RAG) システムは幻覚を緩和するための有望な解決策として登場した。
RAGシステムは、検索データベースに注入された悪意のあるパスが、モデルを誤誘導し、事実的に誤ったアウトプットを発生させるような、敵の毒殺攻撃に弱い。
本稿では,RAGシステムの検索と生成の両要素について検討し,攻撃に対するロバスト性を高める方法について考察する。
論文 参考訳(メタデータ) (2024-12-21T17:31:52Z) - AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases [73.04652687616286]
本稿では,RAG とRAG をベースとした LLM エージェントを標的とした最初のバックドア攻撃である AgentPoison を提案する。
従来のバックドア攻撃とは異なり、AgentPoisonは追加のモデルトレーニングや微調整を必要としない。
エージェントごとに、AgentPoisonは平均攻撃成功率を80%以上達成し、良質なパフォーマンスに最小限の影響を与える。
論文 参考訳(メタデータ) (2024-07-17T17:59:47Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
我々は、VisualWebArena上に現実的な脅威モデルを用いて、200の敵タスクと評価スクリプトを手動で作成する。
我々は,クロボックスフロンティアLMを用いた最新のエージェントを,リフレクションやツリーサーチを行うエージェントを含む,壊すことに成功している。
AREを使用して、新しいコンポーネントの追加に伴うロバスト性の変化を厳格に評価しています。
論文 参考訳(メタデータ) (2024-06-18T17:32:48Z) - Review-Incorporated Model-Agnostic Profile Injection Attacks on
Recommender Systems [24.60223863559958]
本稿では, R-Trojan という新たな攻撃フレームワークを提案する。このフレームワークは, 攻撃目標を最適化問題として定式化し, それを解決するために, トランスフォーマベース生成対向ネットワーク (GAN) を採用している。
実世界のデータセットの実験では、R-Trojanはブラックボックス設定下で、さまざまな犠牲者RSに対する最先端の攻撃方法を大幅に上回っている。
論文 参考訳(メタデータ) (2024-02-14T08:56:41Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Recは、Large Language Modelsに基づいたレコメンデーションのユーザーシミュレータである。
各エージェントは、ページ単位でパーソナライズされた推奨モデルと対話する。
論文 参考訳(メタデータ) (2023-10-16T06:41:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。