論文の概要: Incentivizing Truthful Language Models via Peer Elicitation Games
- arxiv url: http://arxiv.org/abs/2505.13636v1
- Date: Mon, 19 May 2025 18:16:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.479517
- Title: Incentivizing Truthful Language Models via Peer Elicitation Games
- Title(参考訳): Peer Elicitation Gamesによる真理言語モデルのインセンティブ化
- Authors: Baiting Chen, Tong Zhu, Jiale Han, Lexin Li, Gang Li, Xiaowu Dai,
- Abstract要約: 大きな言語モデル(LLM)は強力な生成能力を示しているが、矛盾や幻覚の傾向が強い。
我々は,異なるベースモデルからインスタンス化されたジェネレータと複数の識別器を含むピア・エリケーション機構を通じて,LPMを整列させる学習自由ゲーム理論フレームワークであるPeer Elicitation Games (PEG)を紹介した。
- 参考スコア(独自算出の注目度): 10.530016288072506
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated strong generative capabilities but remain prone to inconsistencies and hallucinations. We introduce Peer Elicitation Games (PEG), a training-free, game-theoretic framework for aligning LLMs through a peer elicitation mechanism involving a generator and multiple discriminators instantiated from distinct base models. Discriminators interact in a peer evaluation setting, where rewards are computed using a determinant-based mutual information score that provably incentivizes truthful reporting without requiring ground-truth labels. We establish theoretical guarantees showing that each agent, via online learning, achieves sublinear regret in the sense their cumulative performance approaches that of the best fixed truthful strategy in hindsight. Moreover, we prove last-iterate convergence to a truthful Nash equilibrium, ensuring that the actual policies used by agents converge to stable and truthful behavior over time. Empirical evaluations across multiple benchmarks demonstrate significant improvements in factual accuracy. These results position PEG as a practical approach for eliciting truthful behavior from LLMs without supervision or fine-tuning.
- Abstract(参考訳): 大きな言語モデル(LLM)は強力な生成能力を示しているが、矛盾や幻覚の傾向が強い。
我々は,異なるベースモデルからインスタンス化されたジェネレータと複数の識別器を含むピア・エリケーション機構を通じて,LPMを整列させる学習自由ゲーム理論フレームワークであるPeer Elicitation Games (PEG)を紹介した。
識別者はピア評価設定で相互作用し、報酬は決定に基づく相互情報スコアを用いて計算される。
我々は,各エージェントが,オンライン学習を通じて,その累積的パフォーマンスが後見の最良の固定真理戦略に近づくという意味で,サブ線形後悔を達成できることを理論的に保証する。
さらに, エージェントが使用する実際のポリシーが, 時間とともに安定かつ真正な行動に収束することを保証し, 真正なナッシュ均衡への最終項目収束を証明した。
複数のベンチマークによる実証的な評価は、事実の正確性を大幅に改善したことを示している。
これらの結果から, PEGは, 監督や微調整を伴わずに, LLMから真理行動を引き出すための実践的アプローチとして位置づけられた。
関連論文リスト
- Improving Fairness in LLMs Through Testing-Time Adversaries [1.7811840395202343]
大規模言語モデル(LLM)は自然言語処理と生成AIのバウンダリをプッシュする。
本研究では,このようなバイアスを軽減するための,単純でユーザフレンドリで実践的な手法を提案する。
本手法は,特定の属性を修正し,対応する予測行動を評価することによって,与えられた文の複数のバリエーションを生成する。
論文 参考訳(メタデータ) (2025-05-17T17:56:53Z) - Search-Based Correction of Reasoning Chains for Language Models [72.61861891295302]
CoT(Chain-of-Thought)推論は言語モデル(LM)の機能と透明性を向上した。
我々はCoTにおける各推論ステップを、その正確性を示す潜在変数で拡張する新しい自己補正フレームワークを導入する。
また,離散探索アルゴリズムであるサーチコレクタも導入した。
論文 参考訳(メタデータ) (2025-05-17T04:16:36Z) - Towards Robust LLMs: an Adversarial Robustness Measurement Framework [0.0]
大規模言語モデル(LLM)は敵の摂動に弱いままであり、高い精度のアプリケーションでは信頼性を損なう。
我々はロバストネス測定および評価フレームワークを適用し、モデルパラメータへのアクセスを必要とせず、逆入力に対するLLMレジリエンスの定量化を行う。
我々の研究は、LLMの堅牢性を評価するための体系的な方法論を提供し、実世界展開のためのより信頼性の高い言語モデルの開発を進めています。
論文 参考訳(メタデータ) (2025-04-24T16:36:19Z) - Estimating Commonsense Plausibility through Semantic Shifts [66.06254418551737]
セマンティックシフトを測定することでコモンセンスの妥当性を定量化する新しい識別フレームワークであるComPaSSを提案する。
2種類の細粒度コモンセンス可視性評価タスクの評価は,ComPaSSが一貫してベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2025-02-19T06:31:06Z) - Confidence Diagram of Nonparametric Ranking for Uncertainty Assessment in Large Language Models Evaluation [20.022623972491733]
大きな言語モデル(LLM)のランク付けは、$N$のポリシーに基づいてアライメントを改善する効果的なツールであることが証明されている。
本稿では,言語モデルのランキングの中から仮説テストのための新しい推論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-07T02:34:30Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Calibrating Reasoning in Language Models with Internal Consistency [18.24350001344488]
大規模言語モデル(LLM)は、様々な推論タスクにおいて印象的な機能を示している。
LLMは、しばしば明らかな誤りと矛盾のあるテキストを生成する。
本研究では,LLMにおける内部表現のレンズによる推論について検討する。
論文 参考訳(メタデータ) (2024-05-29T02:44:12Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD は LLM からファクトコンフリクトの幻覚を検出するために設計されたベンチマークである。
FactCHDは、バニラ、マルチホップ、比較、セット操作など、さまざまな事実パターンにまたがる多様なデータセットを備えている。
Llama2 に基づくツール強化 ChatGPT と LoRA-tuning による反射的考察を合成する Truth-Triangulator を提案する。
論文 参考訳(メタデータ) (2023-10-18T16:27:49Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
モデルベース最適化(MBO)では、マシンラーニングを使用して、(基底真理)オラクルと呼ばれるブラックボックス関数に対する報酬の尺度を最大化する候補を設計することに興味があります。
モデル検証中に基底オラクルに対する近似をトレーニングし、その代わりに使用することができるが、その評価は近似的であり、敵の例に対して脆弱である。
本手法は,外挿量を測定するために提案した評価フレームワークにカプセル化されている。
論文 参考訳(メタデータ) (2022-11-19T16:57:37Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Adversarial Robustness of Supervised Sparse Coding [34.94566482399662]
表現を学習すると同時に、正確な一般化境界と堅牢性証明を与えるモデルを考える。
線形エンコーダと組み合わされたスパーシティプロモーティングエンコーダを組み合わせた仮説クラスに着目した。
エンドツーエンドの分類のための堅牢性証明を提供する。
論文 参考訳(メタデータ) (2020-10-22T22:05:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。