Self-Reinforced Graph Contrastive Learning
- URL: http://arxiv.org/abs/2505.13650v1
- Date: Mon, 19 May 2025 18:45:54 GMT
- Title: Self-Reinforced Graph Contrastive Learning
- Authors: Chou-Ying Hsieh, Chun-Fu Jang, Cheng-En Hsieh, Qian-Hui Chen, Sy-Yen Kuo,
- Abstract summary: We propose SRGCL (Self-Reinforced Graph Contrastive Learning), a novel framework to dynamically evaluate and select high-quality positive pairs.<n>In experiments on diverse graph-level classification tasks, SRGCL consistently outperforms state-of-the-art GCL methods.
- Score: 7.49025068464945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs serve as versatile data structures in numerous real-world domains-including social networks, molecular biology, and knowledge graphs-by capturing intricate relational information among entities. Among graph-based learning techniques, Graph Contrastive Learning (GCL) has gained significant attention for its ability to derive robust, self-supervised graph representations through the contrasting of positive and negative sample pairs. However, a critical challenge lies in ensuring high-quality positive pairs so that the intrinsic semantic and structural properties of the original graph are preserved rather than distorted. To address this issue, we propose SRGCL (Self-Reinforced Graph Contrastive Learning), a novel framework that leverages the model's own encoder to dynamically evaluate and select high-quality positive pairs. We designed a unified positive pair generator employing multiple augmentation strategies, and a selector guided by the manifold hypothesis to maintain the underlying geometry of the latent space. By adopting a probabilistic mechanism for selecting positive pairs, SRGCL iteratively refines its assessment of pair quality as the encoder's representational power improves. Extensive experiments on diverse graph-level classification tasks demonstrate that SRGCL, as a plug-in module, consistently outperforms state-of-the-art GCL methods, underscoring its adaptability and efficacy across various domains.
Related papers
- Self-Supervised Graph Learning via Spectral Bootstrapping and Laplacian-Based Augmentations [1.0377683220196872]
We present LaplaceGNN, a novel self-supervised graph learning framework.<n>Our method integrates Laplacian-based signals into the learning process.<n>LaplaceGNN achieves superior performance compared to state-of-the-art self-supervised graph methods.
arXiv Detail & Related papers (2025-06-25T12:23:23Z) - Conditional Distribution Learning on Graphs [15.730933577970687]
We propose a conditional distribution learning (CDL) method that learns graph representations from graph-structured data for semisupervised graph classification.<n>Specifically, we present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features.
arXiv Detail & Related papers (2024-11-20T07:26:36Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons [50.33260238739837]
Graph networks (GNNs) have demonstrated remarkable capabilities in learning from graph-structured data.<n>There remains a lack of analysis comparing GNNs and generalizations from an optimization and generalization perspective.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
arXiv Detail & Related papers (2022-10-31T08:43:32Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.