SayCoNav: Utilizing Large Language Models for Adaptive Collaboration in Decentralized Multi-Robot Navigation
- URL: http://arxiv.org/abs/2505.13729v1
- Date: Mon, 19 May 2025 20:58:06 GMT
- Title: SayCoNav: Utilizing Large Language Models for Adaptive Collaboration in Decentralized Multi-Robot Navigation
- Authors: Abhinav Rajvanshi, Pritish Sahu, Tixiao Shan, Karan Sikka, Han-Pang Chiu,
- Abstract summary: We present SayCoNav, a new approach that leverages large language models (LLMs) for automatically generating this collaboration strategy among a team of robots.<n>We evaluate SayCoNav on Multi-Object Navigation (MultiON) tasks, that require the team of the robots to utilize their complementary strengths to efficiently search multiple different objects in unknown environments.
- Score: 10.877873071364148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adaptive collaboration is critical to a team of autonomous robots to perform complicated navigation tasks in large-scale unknown environments. An effective collaboration strategy should be determined and adapted according to each robot's skills and current status to successfully achieve the shared goal. We present SayCoNav, a new approach that leverages large language models (LLMs) for automatically generating this collaboration strategy among a team of robots. Building on the collaboration strategy, each robot uses the LLM to generate its plans and actions in a decentralized way. By sharing information to each other during navigation, each robot also continuously updates its step-by-step plans accordingly. We evaluate SayCoNav on Multi-Object Navigation (MultiON) tasks, that require the team of the robots to utilize their complementary strengths to efficiently search multiple different objects in unknown environments. By validating SayCoNav with varied team compositions and conditions against baseline methods, our experimental results show that SayCoNav can improve search efficiency by at most 44.28% through effective collaboration among heterogeneous robots. It can also dynamically adapt to the changing conditions during task execution.
Related papers
- Capability-Aware Shared Hypernetworks for Flexible Heterogeneous Multi-Robot Coordination [2.6590401523087634]
We propose Capability-Aware Shared Hypernetworks (CASH) for multi-robot teams.<n>CASH is a soft weight sharing architecture that uses hypernetworks to efficiently learn a flexible shared policy.<n>We show that CASH consistently outperforms baseline architectures in terms of performance and sample efficiency during both training and zero-shot generalization.
arXiv Detail & Related papers (2025-01-10T15:39:39Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.<n>A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.<n>The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - CAMON: Cooperative Agents for Multi-Object Navigation with LLM-based Conversations [22.79813240034754]
Large language models (LLMs) have exhibited remarkable comprehension and planning abilities.
This paper proposes a framework for decentralized multi-agent navigation, leveraging LLM-enabled communication and collaboration.
arXiv Detail & Related papers (2024-06-30T09:14:33Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Co-NavGPT: Multi-Robot Cooperative Visual Semantic Navigation Using Vision Language Models [8.668211481067457]
Co-NavGPT is a novel framework that integrates a Vision Language Model (VLM) as a global planner.<n>Co-NavGPT aggregates sub-maps from multiple robots with diverse viewpoints into a unified global map.<n>The VLM uses this information to assign frontiers across the robots, facilitating coordinated and efficient exploration.
arXiv Detail & Related papers (2023-10-11T23:17:43Z) - RoCo: Dialectic Multi-Robot Collaboration with Large Language Models [13.260289557301688]
We propose a novel approach to multi-robot collaboration that harnesses the power of pre-trained large language models (LLMs)
We show RoCo easily incorporates human-in-the-loop, where a user can communicate and collaborate with a robot agent to complete tasks together.
arXiv Detail & Related papers (2023-07-10T17:52:01Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
We propose an algorithm that allows robots to efficiently coordinate their strategies in the presence of adversarial inter-agent communications.
It is assumed that the robots have no prior knowledge of the target locations, and they can interact with only a subset of neighboring robots at any time.
The effectiveness of our approach is demonstrated on a collection of prototype grid-world environments.
arXiv Detail & Related papers (2022-12-20T08:13:29Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
We present a novel reinforcement learning based task allocation and decentralized navigation algorithm for mobile robots in warehouse environments.
We consider the problem of joint decentralized task allocation and navigation and present a two level approach to solve it.
We observe improvement up to 14% in terms of task completion time and up-to 40% improvement in terms of computing collision-free trajectories for the robots.
arXiv Detail & Related papers (2022-09-07T00:35:27Z) - Centralizing State-Values in Dueling Networks for Multi-Robot
Reinforcement Learning Mapless Navigation [87.85646257351212]
We study the problem of multi-robot mapless navigation in the popular Training and Decentralized Execution (CTDE) paradigm.
This problem is challenging when each robot considers its path without explicitly sharing observations with other robots.
We propose a novel architecture for CTDE that uses a centralized state-value network to compute a joint state-value.
arXiv Detail & Related papers (2021-12-16T16:47:00Z) - Decentralized Global Connectivity Maintenance for Multi-Robot
Navigation: A Reinforcement Learning Approach [12.649986200029717]
This work investigates how to navigate a multi-robot team in unknown environments while maintaining connectivity.
We propose a reinforcement learning approach to develop a decentralized policy, which is shared among multiple robots.
We validate the effectiveness of the proposed approach by comparing different combinations of connectivity constraints and behavior cloning.
arXiv Detail & Related papers (2021-09-17T13:20:19Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.