PandaGuard: Systematic Evaluation of LLM Safety against Jailbreaking Attacks
- URL: http://arxiv.org/abs/2505.13862v3
- Date: Mon, 26 May 2025 15:25:01 GMT
- Title: PandaGuard: Systematic Evaluation of LLM Safety against Jailbreaking Attacks
- Authors: Guobin Shen, Dongcheng Zhao, Linghao Feng, Xiang He, Jihang Wang, Sicheng Shen, Haibo Tong, Yiting Dong, Jindong Li, Xiang Zheng, Yi Zeng,
- Abstract summary: Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks.<n>Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques.<n>We introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges.
- Score: 7.252454104194306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks, which can bypass safety alignment and elicit harmful outputs. Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques, and lack systematic, reproducible analysis. In this work, we introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges. Our framework implements 19 attack methods and 12 defense mechanisms, along with multiple judgment strategies, all within a flexible plugin architecture supporting diverse LLM interfaces, multiple interaction modes, and configuration-driven experimentation that enhances reproducibility and practical deployment. Built on this framework, we develop PandaBench, a comprehensive benchmark that evaluates the interactions between these attack/defense methods across 49 LLMs and various judgment approaches, requiring over 3 billion tokens to execute. Our extensive evaluation reveals key insights into model vulnerabilities, defense cost-performance trade-offs, and judge consistency. We find that no single defense is optimal across all dimensions and that judge disagreement introduces nontrivial variance in safety assessments. We release the code, configurations, and evaluation results to support transparent and reproducible research in LLM safety.
Related papers
- GuardVal: Dynamic Large Language Model Jailbreak Evaluation for Comprehensive Safety Testing [13.267217024192535]
Jailbreak attacks reveal critical vulnerabilities in Large Language Models (LLMs)<n>We introduce GuardVal, a new evaluation protocol that generates and refines jailbreak prompts based on the defender LLM's state.<n>We apply this protocol to a diverse set of models, from Mistral-7b to GPT-4, across 10 safety domains.
arXiv Detail & Related papers (2025-07-10T13:15:20Z) - CAVGAN: Unifying Jailbreak and Defense of LLMs via Generative Adversarial Attacks on their Internal Representations [9.952498288063532]
Security alignment enables the Large Language Model (LLM) to gain the protection against malicious queries.<n>We analyze the security protection mechanism of the LLM, and propose a framework that combines attack and defense.<n>Our method is based on the linearly separable property of LLM intermediate layer embedding, as well as the essence of jailbreak attack.
arXiv Detail & Related papers (2025-07-08T14:45:21Z) - Why Not Act on What You Know? Unleashing Safety Potential of LLMs via Self-Aware Guard Enhancement [48.50995874445193]
Large Language Models (LLMs) have shown impressive capabilities across various tasks but remain vulnerable to meticulously crafted jailbreak attacks.<n>We propose SAGE (Self-Aware Guard Enhancement), a training-free defense strategy designed to align LLMs' strong safety discrimination performance with their relatively weaker safety generation ability.
arXiv Detail & Related papers (2025-05-17T15:54:52Z) - You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense [34.023473699165315]
We study the utility degradation, safety elevation, and exaggerated-safety escalation of LLMs with jailbreak defense strategies.<n>We find that mainstream jailbreak defenses fail to ensure both safety and performance simultaneously.
arXiv Detail & Related papers (2025-01-21T15:24:29Z) - Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey [50.031628043029244]
Multimodal generative models are susceptible to jailbreak attacks, which can bypass built-in safety mechanisms and induce the production of potentially harmful content.<n>We present a detailed taxonomy of attack methods, defense mechanisms, and evaluation frameworks specific to multimodal generative models.
arXiv Detail & Related papers (2024-11-14T07:51:51Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise.<n>Recent defense mechanisms against these attacks have reached near-saturation performance on benchmark evaluations.
arXiv Detail & Related papers (2024-11-13T07:57:19Z) - $\textit{MMJ-Bench}$: A Comprehensive Study on Jailbreak Attacks and Defenses for Multimodal Large Language Models [11.02754617539271]
We introduce textitMMJ-Bench, a unified pipeline for evaluating jailbreak attacks and defense techniques for MLLMs.
We assess the effectiveness of various attack methods against SoTA MLLMs and evaluate the impact of defense mechanisms on both defense effectiveness and model utility.
arXiv Detail & Related papers (2024-08-16T00:18:23Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)<n>Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.<n> Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Bench is a safety benchmark specifically designed for evaluating Large Language Models (LLMs)
It transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.
arXiv Detail & Related papers (2024-02-07T17:33:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.