GuardVal: Dynamic Large Language Model Jailbreak Evaluation for Comprehensive Safety Testing
- URL: http://arxiv.org/abs/2507.07735v1
- Date: Thu, 10 Jul 2025 13:15:20 GMT
- Title: GuardVal: Dynamic Large Language Model Jailbreak Evaluation for Comprehensive Safety Testing
- Authors: Peiyan Zhang, Haibo Jin, Liying Kang, Haohan Wang,
- Abstract summary: Jailbreak attacks reveal critical vulnerabilities in Large Language Models (LLMs)<n>We introduce GuardVal, a new evaluation protocol that generates and refines jailbreak prompts based on the defender LLM's state.<n>We apply this protocol to a diverse set of models, from Mistral-7b to GPT-4, across 10 safety domains.
- Score: 13.267217024192535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Jailbreak attacks reveal critical vulnerabilities in Large Language Models (LLMs) by causing them to generate harmful or unethical content. Evaluating these threats is particularly challenging due to the evolving nature of LLMs and the sophistication required in effectively probing their vulnerabilities. Current benchmarks and evaluation methods struggle to fully address these challenges, leaving gaps in the assessment of LLM vulnerabilities. In this paper, we review existing jailbreak evaluation practices and identify three assumed desiderata for an effective jailbreak evaluation protocol. To address these challenges, we introduce GuardVal, a new evaluation protocol that dynamically generates and refines jailbreak prompts based on the defender LLM's state, providing a more accurate assessment of defender LLMs' capacity to handle safety-critical situations. Moreover, we propose a new optimization method that prevents stagnation during prompt refinement, ensuring the generation of increasingly effective jailbreak prompts that expose deeper weaknesses in the defender LLMs. We apply this protocol to a diverse set of models, from Mistral-7b to GPT-4, across 10 safety domains. Our findings highlight distinct behavioral patterns among the models, offering a comprehensive view of their robustness. Furthermore, our evaluation process deepens the understanding of LLM behavior, leading to insights that can inform future research and drive the development of more secure models.
Related papers
- PandaGuard: Systematic Evaluation of LLM Safety against Jailbreaking Attacks [7.252454104194306]
Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks.<n>Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques.<n>We introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges.
arXiv Detail & Related papers (2025-05-20T03:14:57Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
Large language models (LLMs) are becoming more capable and widespread.<n>Recent advances in standardizing, measuring, and scaling test-time compute suggest new methodologies for optimizing models to achieve high performance on hard tasks.<n>In this paper, we apply these advances to the task of model jailbreaking: eliciting harmful responses from aligned LLMs.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense [34.023473699165315]
We study the utility degradation, safety elevation, and exaggerated-safety escalation of LLMs with jailbreak defense strategies.<n>We find that mainstream jailbreak defenses fail to ensure both safety and performance simultaneously.
arXiv Detail & Related papers (2025-01-21T15:24:29Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.<n>We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.<n>Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, Multimodal Large Language Models (MLLMs) remain vulnerable to jailbreak attacks.<n>We propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise.<n>Recent defense mechanisms against these attacks have reached near-saturation performance on benchmark evaluations.
arXiv Detail & Related papers (2024-11-13T07:57:19Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
Large Language Models (LLMs) have gained widespread use, raising concerns about their security.
We introduce PathSeeker, a novel black-box jailbreak method, which is inspired by the game of rats escaping a maze.
Our method outperforms five state-of-the-art attack techniques when tested across 13 commercial and open-source LLMs.
arXiv Detail & Related papers (2024-09-21T15:36:26Z) - Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
We focus on 10 cutting-edge jailbreak strategies across three categories, 1525 questions from 61 specific harmful categories, and 13 popular LLMs.
We adopt multi-dimensional metrics such as Attack Success Rate (ASR), Toxicity Score, Fluency, Token Length, and Grammatical Errors to thoroughly assess the LLMs' outputs under jailbreak.
We explore the relationships among the models, attack strategies, and types of harmful content, as well as the correlations between the evaluation metrics, which proves the validity of our multifaceted evaluation framework.
arXiv Detail & Related papers (2024-08-18T01:58:03Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)<n>Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.<n> Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer.
To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback.
Recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails.
This paper proposes a method called Gradient Cuff to detect jailbreak attempts.
arXiv Detail & Related papers (2024-03-01T03:29:54Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.