論文の概要: Graphon Mixtures
- arxiv url: http://arxiv.org/abs/2505.13864v1
- Date: Tue, 20 May 2025 03:19:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.650132
- Title: Graphon Mixtures
- Title(参考訳): グラファイトミキサー
- Authors: Sevvandi Kandanaarachchi, Cheng Soon Ong,
- Abstract要約: ソーシャルネットワークには少数の大きなハブがあり、多くの小さな密集したコミュニティがある。
本稿では,ハブ構造と高密度構造の両方を捕捉する生成モデルを提案する。
理論的には、ハブの正規化度を推定でき、グラフ混合のスパース成分に対応するグラフを推定できる。
- 参考スコア(独自算出の注目度): 6.822247359790484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social networks have a small number of large hubs, and a large number of small dense communities. We propose a generative model that captures both hub and dense structures. Based on recent results about graphons on line graphs, our model is a graphon mixture, enabling us to generate sequences of graphs where each graph is a combination of sparse and dense graphs. We propose a new condition on sparse graphs (the max-degree), which enables us to identify hubs. We show theoretically that we can estimate the normalized degree of the hubs, as well as estimate the graphon corresponding to sparse components of graph mixtures. We illustrate our approach on synthetic data, citation graphs, and social networks, showing the benefits of explicitly modeling sparse graphs.
- Abstract(参考訳): ソーシャルネットワークには少数の大きなハブがあり、多くの小さな密集したコミュニティがある。
本稿では,ハブ構造と高密度構造の両方を捕捉する生成モデルを提案する。
線グラフ上のグラフに関する最近の結果に基づいて、我々のモデルはグラフの混合であり、各グラフがスパースグラフと高密度グラフの組み合わせであるグラフのシーケンスを生成することができる。
スパースグラフ(最大度)の新たな条件を提案し,ハブを同定する。
理論的には、ハブの正規化度を推定でき、グラフ混合のスパース成分に対応するグラフを推定できる。
合成データ,引用グラフ,ソーシャルネットワークに対する我々のアプローチを概説し,スパースグラフを明示的にモデル化する利点を示す。
関連論文リスト
- Graph Mixup with Soft Alignments [49.61520432554505]
本研究では,画像上での使用に成功しているミキサアップによるグラフデータの増大について検討する。
ソフトアライメントによるグラフ分類のための簡易かつ効果的な混合手法であるS-Mixupを提案する。
論文 参考訳(メタデータ) (2023-06-11T22:04:28Z) - A Spectral Analysis of Graph Neural Networks on Dense and Sparse Graphs [13.954735096637298]
そこで我々は,グラフスペクトルの空間分布がグラフスペクトルに与える影響を解析し,グラフニューラルネットワーク(GNN)の高密度グラフとスパースグラフのノード分類における性能について検討した。
GNNはスパースグラフのスペクトル法よりも優れており、これらの結果を合成グラフと実グラフの両方で数値例で示すことができる。
論文 参考訳(メタデータ) (2022-11-06T22:38:13Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - G-Mixup: Graph Data Augmentation for Graph Classification [55.63157775049443]
Mixupは、2つのランダムサンプル間の特徴とラベルを補間することにより、ニューラルネットワークの一般化とロバスト性を改善する上で優位性を示している。
グラフ分類のためのグラフを増補するために$mathcalG$-Mixupを提案し、グラフの異なるクラスのジェネレータ(すなわちグラフ)を補間する。
実験により、$mathcalG$-MixupはGNNの一般化とロバスト性を大幅に改善することが示された。
論文 参考訳(メタデータ) (2022-02-15T04:09:44Z) - Graphon-aided Joint Estimation of Multiple Graphs [24.077455621015552]
観測結果から複数のネットワークのトポロジを推定する問題を考察する。
これは非パラメトリックなモデルであり、潜在的に異なるサイズのグラフを描画することができる。
論文 参考訳(メタデータ) (2022-02-11T15:20:44Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphonは任意のサイズでグラフを生成する非パラメトリックモデルであり、グラフから簡単に誘導できる。
解析可能でスケーラブルなグラフ生成モデルを構築するために,textitgraphon autoencoder という新しいフレームワークを提案する。
線形グルーポン分解モデルはデコーダとして機能し、潜在表現を活用して誘導されたグルーポンを再構成する。
論文 参考訳(メタデータ) (2021-05-29T08:11:40Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。