論文の概要: G-Mixup: Graph Data Augmentation for Graph Classification
- arxiv url: http://arxiv.org/abs/2202.07179v2
- Date: Wed, 16 Feb 2022 05:15:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 12:38:06.431444
- Title: G-Mixup: Graph Data Augmentation for Graph Classification
- Title(参考訳): G-Mixup:グラフ分類のためのグラフデータ拡張
- Authors: Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Xia Hu
- Abstract要約: Mixupは、2つのランダムサンプル間の特徴とラベルを補間することにより、ニューラルネットワークの一般化とロバスト性を改善する上で優位性を示している。
グラフ分類のためのグラフを増補するために$mathcalG$-Mixupを提案し、グラフの異なるクラスのジェネレータ(すなわちグラフ)を補間する。
実験により、$mathcalG$-MixupはGNNの一般化とロバスト性を大幅に改善することが示された。
- 参考スコア(独自算出の注目度): 55.63157775049443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work develops \emph{mixup for graph data}. Mixup has shown superiority
in improving the generalization and robustness of neural networks by
interpolating features and labels between two random samples. Traditionally,
Mixup can work on regular, grid-like, and Euclidean data such as image or
tabular data. However, it is challenging to directly adopt Mixup to augment
graph data because different graphs typically: 1) have different numbers of
nodes; 2) are not readily aligned; and 3) have unique typologies in
non-Euclidean space. To this end, we propose $\mathcal{G}$-Mixup to augment
graphs for graph classification by interpolating the generator (i.e., graphon)
of different classes of graphs. Specifically, we first use graphs within the
same class to estimate a graphon. Then, instead of directly manipulating
graphs, we interpolate graphons of different classes in the Euclidean space to
get mixed graphons, where the synthetic graphs are generated through sampling
based on the mixed graphons. Extensive experiments show that
$\mathcal{G}$-Mixup substantially improves the generalization and robustness of
GNNs.
- Abstract(参考訳): この研究はグラフデータのための \emph{mixup を開発する。
Mixupは、2つのランダムサンプル間の特徴とラベルを補間することにより、ニューラルネットワークの一般化とロバスト性を改善する上で優位性を示している。
従来、Mixupは画像や表データなどの正規データ、グリッドデータ、ユークリッドデータを扱うことができる。
しかし、グラフデータを追加するためにmixupを直接採用するのは困難である。
1) ノードの数が異なる。
2) 容易に一致しない,及び
3) 非ユークリッド空間において特異な型付けを持つ。
この目的のために、グラフの異なるクラスの生成元(すなわち、グラフ)を補間することによりグラフ分類のための拡張グラフに対する$\mathcal{G}$-Mixupを提案する。
具体的には、まず同じクラス内のグラフを使ってgraphonを推定します。
次に、グラフを直接操作するのではなく、ユークリッド空間内の異なるクラスのグラフを補間して混合グラフを得る。
拡張実験により、$\mathcal{G}$-Mixup は GNN の一般化とロバスト性を大幅に改善することが示された。
関連論文リスト
- Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph
Clustering [29.17784041837907]
マルチビューグラフクラスタリング(AHGFC)のための適応ハイブリッドグラフフィルタを提案する。
AHGFCはグラフ結合集約行列に基づいてノード埋め込みを学習する。
実験結果から,同好性グラフと異好性グラフを含む6つのデータセットに対して,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2024-01-05T07:27:29Z) - Finding the Missing-half: Graph Complementary Learning for
Homophily-prone and Heterophily-prone Graphs [48.79929516665371]
ホモフィリーなエッジを持つグラフは、同じクラスでノードを接続する傾向がある。
ヘテロフィ的傾向のあるエッジは、異なるクラスを持つノード間の関係を構築する傾向がある。
既存のGNNはトレーニング中にオリジナルのグラフのみを取る。
論文 参考訳(メタデータ) (2023-06-13T08:06:10Z) - Graph Mixup with Soft Alignments [49.61520432554505]
本研究では,画像上での使用に成功しているミキサアップによるグラフデータの増大について検討する。
ソフトアライメントによるグラフ分類のための簡易かつ効果的な混合手法であるS-Mixupを提案する。
論文 参考訳(メタデータ) (2023-06-11T22:04:28Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
グラフを好適なGNNモデルが見つかる前に、まずホモ親和性あるいはヘテロ親和性として識別することは不可能である。
本稿では,グラフ再構成,混合フィルタ,二重グラフクラスタリングネットワークという3つの重要な要素を含むグラフクラスタリング手法を提案する。
我々の手法は異種グラフ上で他者を支配している。
論文 参考訳(メタデータ) (2023-05-03T01:49:01Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
グラフニューラルネットワーク(GNN)は、グラフデータからの学習に広く応用されている。
GNNの一般化能力を強化するため、グラフ強化のような技術を用いて、トレーニンググラフ構造を増強することが慣例となっている。
本研究では,GNNにMixture-of-Experts(MoE)の概念を導入する。
論文 参考訳(メタデータ) (2023-04-06T01:09:36Z) - Model-Agnostic Augmentation for Accurate Graph Classification [19.824105919844495]
グラフ拡張は、グラフベースのタスクのパフォーマンスを改善するための重要な戦略である。
本研究では,有効拡張のための5つの望ましい特性を紹介する。
ソーシャルネットワークと分子グラフに関する実験により、NodeSamとSubMixはグラフ分類における既存のアプローチより優れていることが示された。
論文 参考訳(メタデータ) (2022-02-21T10:37:53Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
我々は、グラフ畳み込みネットワーク(GCN)を構築するために使用される生成グラフモデルを導入することにより、グラフに非グラフデータセットを変換する方法を示す。
アンカーによって構築された二部グラフは、データの背後にある高レベル情報を利用するために動的に更新される。
理論的には、単純な更新が退化につながることを証明し、それに従って特定の戦略が設計される。
論文 参考訳(メタデータ) (2021-11-12T07:08:13Z) - Intrusion-Free Graph Mixup [33.07540841212878]
グラフニューラルネットワーク(GNN)の一般化を改善するための,単純かつ効果的な正規化手法を提案する。
視覚とテキストのためのMixup regularizerの最近の進歩を利用して、ランダムなサンプルペアとそのラベルを補間して、トレーニング用の合成サンプルを作成する。
提案手法は,グラフ分類学習を効果的に正規化することが可能であり,一般的なグラフ拡張ベースラインよりも予測精度が優れている。
論文 参考訳(メタデータ) (2021-10-18T14:16:00Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。