論文の概要: ShortcutProbe: Probing Prediction Shortcuts for Learning Robust Models
- arxiv url: http://arxiv.org/abs/2505.13910v1
- Date: Tue, 20 May 2025 04:21:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.739688
- Title: ShortcutProbe: Probing Prediction Shortcuts for Learning Robust Models
- Title(参考訳): ShortcutProbe:ロバストモデル学習のための予測ショートカットの提案
- Authors: Guangtao Zheng, Wenqian Ye, Aidong Zhang,
- Abstract要約: ディープラーニングモデルは、必然的にターゲットと非本質的な特徴の間の急激な相関を学習する。
本稿では,グループラベルを必要とせず,新たなポストホックスプリアスバイアス緩和フレームワークを提案する。
我々のフレームワークであるShortcutProbeは、与えられたモデルの潜在空間における予測の非破壊性を反映した予測ショートカットを識別する。
- 参考スコア(独自算出の注目度): 26.544938760265136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models often achieve high performance by inadvertently learning spurious correlations between targets and non-essential features. For example, an image classifier may identify an object via its background that spuriously correlates with it. This prediction behavior, known as spurious bias, severely degrades model performance on data that lacks the learned spurious correlations. Existing methods on spurious bias mitigation typically require a variety of data groups with spurious correlation annotations called group labels. However, group labels require costly human annotations and often fail to capture subtle spurious biases such as relying on specific pixels for predictions. In this paper, we propose a novel post hoc spurious bias mitigation framework without requiring group labels. Our framework, termed ShortcutProbe, identifies prediction shortcuts that reflect potential non-robustness in predictions in a given model's latent space. The model is then retrained to be invariant to the identified prediction shortcuts for improved robustness. We theoretically analyze the effectiveness of the framework and empirically demonstrate that it is an efficient and practical tool for improving a model's robustness to spurious bias on diverse datasets.
- Abstract(参考訳): ディープラーニングモデルは、しばしば、ターゲットと非本質的な特徴の間の急激な相関を不注意に学習することで、高いパフォーマンスを達成する。
例えば、画像分類器は、その背景からオブジェクトを識別し、それと関連付けている。
この予測行動はスプリアスバイアスと呼ばれ、学習されたスプリアス相関を欠くデータ上でのモデル性能を著しく低下させる。
スプリアスバイアス緩和の既存の方法は、通常、グループラベルと呼ばれるスプリアス相関アノテーションを持つ様々なデータグループを必要とする。
しかし、グループラベルは人為的なアノテーションを必要とするため、予測のために特定のピクセルに依存するなど、微妙な偏見を捉えるのに失敗することが多い。
本稿では,グループラベルを必要とせず,新たなポストホックスプリアスバイアス緩和フレームワークを提案する。
我々のフレームワークであるShortcutProbeは、与えられたモデルの潜在空間における予測の非破壊性を反映した予測ショートカットを識別する。
モデルは、ロバスト性を改善するために、識別された予測ショートカットに不変であるように再訓練される。
本稿では,フレームワークの有効性を理論的に分析し,モデルの堅牢性を向上し,多様なデータセットに刺激的なバイアスを与えるための,効率的かつ実用的なツールであることを実証する。
関連論文リスト
- Fighting Spurious Correlations in Text Classification via a Causal Learning Perspective [2.7813683000222653]
本稿では,因果関係へのモデル依存を軽減するために,因果相関ロバスト (CCR) を提案する。
CCRは、逆確率重み付け(IPW)損失関数とともに、反ファクト推論に基づく因果的特徴選択法を統合する。
グループラベルを持たないメソッド間でのCCRの最先端性能を示し、場合によってはグループラベルを利用するモデルと競合する。
論文 参考訳(メタデータ) (2024-11-01T21:29:07Z) - Not Eliminate but Aggregate: Post-Hoc Control over Mixture-of-Experts to Address Shortcut Shifts in Natural Language Understanding [5.4480125359160265]
本稿では,各専門家が比較的異なる潜伏特徴を捉えていると仮定して,実験結果の混合予測を悲観的に集約する手法を提案する。
実験結果から,専門家に対するポストホック制御は,ショートカットにおける分布シフトに対するモデルのロバスト性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-06-17T20:00:04Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
本稿では, Aleatoric Uncertainty-aware Recommendation (AUR) フレームワークを提案する。
AURは、新しい不確実性推定器と通常のレコメンデータモデルで構成されている。
誤ラベルの可能性がペアの可能性を反映しているため、AURは不確実性に応じてレコメンデーションを行う。
論文 参考訳(メタデータ) (2022-09-22T04:32:51Z) - Less Learn Shortcut: Analyzing and Mitigating Learning of Spurious
Feature-Label Correlation [44.319739489968164]
ディープニューラルネットワークは、タスクを理解するのではなく、意思決定をするためのショートカットとしてデータセットバイアスを取ることが多い。
本研究では,モデルがバイアスデータ分布から学習する単語特徴とラベルとの素早い相関に着目した。
本手法は, 偏りのある例と下級者の偏り度を定量的に評価する学習戦略である。
論文 参考訳(メタデータ) (2022-05-25T09:08:35Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。