VAMO: Efficient Large-Scale Nonconvex Optimization via Adaptive Zeroth Order Variance Reduction
- URL: http://arxiv.org/abs/2505.13954v1
- Date: Tue, 20 May 2025 05:31:15 GMT
- Title: VAMO: Efficient Large-Scale Nonconvex Optimization via Adaptive Zeroth Order Variance Reduction
- Authors: Jiahe Chen, Ziye Ma,
- Abstract summary: VAMO combines FO mini-batch gradients with ZO finite-difference probes under an ZOG-style framework.<n>VAMO outperforms established FO and ZO methods, offering a faster, more flexible option for improved efficiency.
- Score: 3.130722489512822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing large-scale nonconvex problems, common in machine learning, demands balancing rapid convergence with computational efficiency. First-order (FO) stochastic methods like SVRG provide fast convergence and good generalization but incur high costs due to full-batch gradients in large models. Conversely, zeroth-order (ZO) algorithms reduce this burden using estimated gradients, yet their slow convergence in high-dimensional settings limits practicality. We introduce VAMO (VAriance-reduced Mixed-gradient Optimizer), a stochastic variance-reduced method combining FO mini-batch gradients with lightweight ZO finite-difference probes under an SVRG-style framework. VAMO's hybrid design uses a two-point ZO estimator to achieve a dimension-agnostic convergence rate of $\mathcal{O}(1/T + 1/b)$, where $T$ is the number of iterations and $b$ is the batch-size, surpassing the dimension-dependent slowdown of purely ZO methods and significantly improving over SGD's $\mathcal{O}(1/\sqrt{T})$ rate. Additionally, we propose a multi-point ZO variant that mitigates the $O(1/b)$ error by adjusting number of estimation points to balance convergence and cost, making it ideal for a whole range of computationally constrained scenarios. Experiments including traditional neural network training and LLM finetuning show VAMO outperforms established FO and ZO methods, offering a faster, more flexible option for improved efficiency.
Related papers
- A Trainable Optimizer [18.195022468462753]
We present a framework that jointly trains the full gradient estimator and the trainable weights of the model.<n>Pseudo-linear TO incurs negligible computational overhead, requiring only minimal additional multiplications.<n> Experiments demonstrate that TO methods converge faster than benchmark algorithms.
arXiv Detail & Related papers (2025-08-03T14:06:07Z) - SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning [18.055120576191204]
Ill-conditioned objectives and nonsmooth regularizers undermine the performance of traditional convex methods.<n>We propose a variance-free solution for ill-conditioned composite large-scale machine learning problems.
arXiv Detail & Related papers (2025-01-27T10:36:45Z) - Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions [26.543628010637036]
We introduce a novel adaptive reduction method that achieves an optimal convergence rate of $mathcalO(log T)$ for non- functions.
We also extend the proposed technique to obtain the same optimal rate of $mathcalO(log T)$ for compositional optimization.
arXiv Detail & Related papers (2024-06-04T04:39:51Z) - Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient [40.22217106270146]
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods.
In composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random estimation.
This paper proposes the Zeroth-order Proximal Double Variance Reduction (ZPDVR) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances.
arXiv Detail & Related papers (2024-05-28T02:27:53Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples.
We show that our SSN method achieves a global convergence rate of $O (1/sqrtk)$, and a local quadratic convergence rate under standard regularity conditions.
arXiv Detail & Related papers (2023-10-21T18:48:45Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
Preconditioning is a highly effective step for any iterative method involving matrix-vector multiplication.
We prove that preconditioning has an additional benefit that has been previously unexplored.
It simultaneously can reduce variance at essentially negligible cost.
arXiv Detail & Related papers (2021-07-01T06:43:11Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.<n>We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - A Variance Controlled Stochastic Method with Biased Estimation for
Faster Non-convex Optimization [0.0]
We propose a new technique, em variance controlled gradient (VCSG), to improve the performance of the reduced gradient (SVRG)
$lambda$ is introduced in VCSG to avoid over-reducing a variance by SVRG.
$mathcalO(min1/epsilon3/2,n1/4/epsilon)$ number of gradient evaluations, which improves the leading gradient complexity.
arXiv Detail & Related papers (2021-02-19T12:22:56Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.