SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
- URL: http://arxiv.org/abs/2501.15941v1
- Date: Mon, 27 Jan 2025 10:36:45 GMT
- Title: SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
- Authors: Jingruo Sun, Zachary Frangella, Madeleine Udell,
- Abstract summary: Ill-conditioned objectives and nonsmooth regularizers undermine the performance of traditional convex methods.
We propose a variance-free solution for ill-conditioned composite large-scale machine learning problems.
- Score: 18.055120576191204
- License:
- Abstract: Regularized empirical risk minimization (rERM) has become important in data-intensive fields such as genomics and advertising, with stochastic gradient methods typically used to solve the largest problems. However, ill-conditioned objectives and non-smooth regularizers undermine the performance of traditional stochastic gradient methods, leading to slow convergence and significant computational costs. To address these challenges, we propose the $\texttt{SAPPHIRE}$ ($\textbf{S}$ketching-based $\textbf{A}$pproximations for $\textbf{P}$roximal $\textbf{P}$reconditioning and $\textbf{H}$essian $\textbf{I}$nexactness with Variance-$\textbf{RE}$educed Gradients) algorithm, which integrates sketch-based preconditioning to tackle ill-conditioning and uses a scaled proximal mapping to minimize the non-smooth regularizer. This stochastic variance-reduced algorithm achieves condition-number-free linear convergence to the optimum, delivering an efficient and scalable solution for ill-conditioned composite large-scale convex machine learning problems. Extensive experiments on lasso and logistic regression demonstrate that $\texttt{SAPPHIRE}$ often converges $20$ times faster than other common choices such as $\texttt{Catalyst}$, $\texttt{SAGA}$, and $\texttt{SVRG}$. This advantage persists even when the objective is non-convex or the preconditioner is infrequently updated, highlighting its robust and practical effectiveness.
Related papers
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
We present a $textbfMA-OSMA$ algorithm to transfer the discrete submodular problem into a continuous optimization.
We also introduce a projection-free $textbfMA-OSEA$ algorithm, which effectively utilizes the KL divergence by mixing a uniform distribution.
Our algorithms significantly improve the $(frac11+c)$-approximation provided by the state-of-the-art OSG algorithm.
arXiv Detail & Related papers (2025-02-07T15:57:56Z) - Stochastic Constrained Decentralized Optimization for Machine Learning with Fewer Data Oracles: a Gradient Sliding Approach [32.36073823372713]
In machine-learning models, the algorithm has to communicate to the data center and sample data for its gradient.
This gives rise to the need for a decentralized optimization algorithm that is communication-efficient and minimizes the number of gradient computations.
We propose a primal-dual sliding with conditional gradient sliding framework, which is communication-efficient and achieves an $varepsilon$-approximate solution.
arXiv Detail & Related papers (2024-04-03T06:55:59Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
Multilinear logistic regression serves as a powerful tool for the analysis of multidimensional data.
We propose an Accelerated Proximal Alternating Minim-MLSR model to solve the $ell_0$-MLSR.
We also demonstrate that APALM$+$ is globally convergent to a first-order critical point as well as to establish convergence by using the Kurdy-Lojasiewicz property.
arXiv Detail & Related papers (2023-09-17T11:05:08Z) - PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates [17.777466668123886]
We introduce PROMISE ($textbfPr$econditioned $textbfO$ptimization $textbfM$ethods by $textbfI$ncorporating $textbfS$calable Curvature $textbfE$stimates), a suite of sketching-based preconditioned gradient algorithms.
PROMISE includes preconditioned versions of SVRG, SAGA, and Katyusha.
arXiv Detail & Related papers (2023-09-05T07:49:10Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - SketchySGD: Reliable Stochastic Optimization via Randomized Curvature
Estimates [19.420605210427635]
SketchySGD improves upon existing gradient methods in machine learning by using randomized low-rank approximations to the subsampled Hessian.
We show theoretically that SketchySGD with a fixed stepsize converges linearly to a small ball around the optimum.
In the ill-conditioned setting we show SketchySGD converges at a faster rate than SGD for least-squares problems.
arXiv Detail & Related papers (2022-11-16T01:05:41Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Sharper Rates and Flexible Framework for Nonconvex SGD with Client and
Data Sampling [64.31011847952006]
We revisit the problem of finding an approximately stationary point of the average of $n$ smooth and possibly non-color functions.
We generalize the $smallsfcolorgreen$ so that it can provably work with virtually any sampling mechanism.
We provide the most general and most accurate analysis of optimal bound in the smooth non-color regime.
arXiv Detail & Related papers (2022-06-05T21:32:33Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - Stochastic Proximal Gradient Algorithm with Minibatches. Application to
Large Scale Learning Models [2.384873896423002]
We develop and analyze minibatch variants of gradient algorithm for general composite objective functions with nonsmooth components.
We provide complexity for constant and variable stepsize iteration policies obtaining that, for minibatch size $N$, after $mathcalO(frac1Nepsilon)$ $epsilon-$subity is attained in expected quadratic distance to optimal solution.
arXiv Detail & Related papers (2020-03-30T10:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.