論文の概要: Beyond Text: Unveiling Privacy Vulnerabilities in Multi-modal Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2505.13957v1
- Date: Tue, 20 May 2025 05:37:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.769207
- Title: Beyond Text: Unveiling Privacy Vulnerabilities in Multi-modal Retrieval-Augmented Generation
- Title(参考訳): テキストを超えて: マルチモーダル検索拡張ジェネレーションにおけるプライバシー脆弱性の発見
- Authors: Jiankun Zhang, Shenglai Zeng, Jie Ren, Tianqi Zheng, Hui Liu, Xianfeng Tang, Hui Liu, Yi Chang,
- Abstract要約: MRAGのプライバシーの脆弱性を視覚言語と音声言語にまたがって初めて体系的に分析する。
実験の結果,LMMは検索した内容に類似した出力を直接生成し,センシティブな情報を間接的に公開する記述を生成することができることがわかった。
- 参考スコア(独自算出の注目度): 17.859942323017133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Retrieval-Augmented Generation (MRAG) systems enhance LMMs by integrating external multimodal databases, but introduce unexplored privacy vulnerabilities. While text-based RAG privacy risks have been studied, multimodal data presents unique challenges. We provide the first systematic analysis of MRAG privacy vulnerabilities across vision-language and speech-language modalities. Using a novel compositional structured prompt attack in a black-box setting, we demonstrate how attackers can extract private information by manipulating queries. Our experiments reveal that LMMs can both directly generate outputs resembling retrieved content and produce descriptions that indirectly expose sensitive information, highlighting the urgent need for robust privacy-preserving MRAG techniques.
- Abstract(参考訳): MRAG(Multimodal Retrieval-Augmented Generation)システムは、外部のマルチモーダルデータベースを統合することでLMMを強化するが、未解決のプライバシー脆弱性を導入する。
テキストベースのRAGプライバシーリスクは研究されているが、マルチモーダルデータには固有の課題がある。
MRAGのプライバシーの脆弱性を視覚言語と音声言語にまたがって初めて体系的に分析する。
ブラックボックス設定の新規な構成的プロンプト攻撃を用いて、攻撃者がクエリを操作することで、プライベート情報を抽出する方法を実証する。
実験の結果,LMMは検索したコンテンツに類似したアウトプットを直接生成し,機密情報を間接的に公開する記述を生成できることがわかった。
関連論文リスト
- Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation [88.78166077081912]
我々は、MLLMから特定のマルチモーダル知識を削除する方法を評価するために、マルチモーダル・アンラーニング・ベンチマークUnLOK-VQAとアタック・アンド・ディフェンス・フレームワークを導入する。
その結果,マルチモーダル攻撃はテキストや画像のみの攻撃よりも優れており,最も効果的な防御は内部モデル状態から解答情報を除去することを示した。
論文 参考訳(メタデータ) (2025-05-01T01:54:00Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
我々はFedE4RAG(Federated Retrieval-Augmented Generation)と呼ばれる新しいフレームワークを提案する。
FedE4RAGはクライアント側RAG検索モデルの協調トレーニングを容易にする。
モデルパラメータの保護にフェデレート学習の準同型暗号化を適用する。
論文 参考訳(メタデータ) (2025-04-27T04:26:02Z) - RAG with Differential Privacy [3.009591302286514]
Retrieval-Augmented Generation (RAG) は、新鮮で関連するコンテキストを持つ大規模言語モデルを提供する主要な技術として登場した。
外部文書を生成プロセスに統合することは、重大なプライバシー上の懸念を引き起こす。
本稿では,個人データから一般知識を抽出する手法を提案する。
論文 参考訳(メタデータ) (2024-12-26T17:34:26Z) - Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions [11.338466798715906]
細調整された大規模言語モデル(LLM)は、様々な領域で最先端のパフォーマンスを達成することができる。
本稿では、微調整LDMに関連するプライバシー問題に関する包括的調査を行う。
メンバーシップ推論、データ抽出、バックドア攻撃など、さまざまなプライバシ攻撃に対する脆弱性を強調します。
論文 参考訳(メタデータ) (2024-12-21T06:41:29Z) - RAG-Thief: Scalable Extraction of Private Data from Retrieval-Augmented Generation Applications with Agent-based Attacks [18.576435409729655]
本稿では,RAG-Thiefと呼ばれるエージェントベースの自動プライバシ攻撃を提案する。
RAGアプリケーションで使用されるプライベートデータベースから、スケーラブルな量のプライベートデータを抽出することができる。
我々の発見は、現在のRAGアプリケーションにおけるプライバシー上の脆弱性を強調し、より強力な保護の必要性を強調します。
論文 参考訳(メタデータ) (2024-11-21T13:18:03Z) - CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model [9.224965304457708]
本稿では,新しいマルチモーダル検索フレームワークであるMLLM (CUE-M) について述べる。
画像コンテキストの強化、インテントの洗練、コンテキストクエリ生成、外部APIの統合、関連ベースのフィルタリングなどが含まれている。
知識に基づくVQAと安全性に関する実単語データセットと公開ベンチマークの実験は、CUE-Mがベースラインを上回り、新しい最先端の結果を確立することを示した。
論文 参考訳(メタデータ) (2024-11-19T07:16:48Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented Generation (RAG)は、プロプライエタリおよびプライベートデータによる言語モデルを容易にする強力な技術である。
本研究では,プライベート検索データベースの漏洩に対するRAGシステムの脆弱性を実証する,新たな攻撃手法による実証的研究を行う。
論文 参考訳(メタデータ) (2024-02-23T18:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。