論文の概要: RAG-Thief: Scalable Extraction of Private Data from Retrieval-Augmented Generation Applications with Agent-based Attacks
- arxiv url: http://arxiv.org/abs/2411.14110v1
- Date: Thu, 21 Nov 2024 13:18:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:17:30.163564
- Title: RAG-Thief: Scalable Extraction of Private Data from Retrieval-Augmented Generation Applications with Agent-based Attacks
- Title(参考訳): RAG-Thief: エージェントベース攻撃を用いた検索拡張型アプリケーションからの個人データのスケーラブル抽出
- Authors: Changyue Jiang, Xudong Pan, Geng Hong, Chenfu Bao, Min Yang,
- Abstract要約: 本稿では,RAG-Thiefと呼ばれるエージェントベースの自動プライバシ攻撃を提案する。
RAGアプリケーションで使用されるプライベートデータベースから、スケーラブルな量のプライベートデータを抽出することができる。
我々の発見は、現在のRAGアプリケーションにおけるプライバシー上の脆弱性を強調し、より強力な保護の必要性を強調します。
- 参考スコア(独自算出の注目度): 18.576435409729655
- License:
- Abstract: While large language models (LLMs) have achieved notable success in generative tasks, they still face limitations, such as lacking up-to-date knowledge and producing hallucinations. Retrieval-Augmented Generation (RAG) enhances LLM performance by integrating external knowledge bases, providing additional context which significantly improves accuracy and knowledge coverage. However, building these external knowledge bases often requires substantial resources and may involve sensitive information. In this paper, we propose an agent-based automated privacy attack called RAG-Thief, which can extract a scalable amount of private data from the private database used in RAG applications. We conduct a systematic study on the privacy risks associated with RAG applications, revealing that the vulnerability of LLMs makes the private knowledge bases suffer significant privacy risks. Unlike previous manual attacks which rely on traditional prompt injection techniques, RAG-Thief starts with an initial adversarial query and learns from model responses, progressively generating new queries to extract as many chunks from the knowledge base as possible. Experimental results show that our RAG-Thief can extract over 70% information from the private knowledge bases within customized RAG applications deployed on local machines and real-world platforms, including OpenAI's GPTs and ByteDance's Coze. Our findings highlight the privacy vulnerabilities in current RAG applications and underscore the pressing need for stronger safeguards.
- Abstract(参考訳): 大きな言語モデル(LLM)は、生成タスクにおいて顕著な成功を収めてきたが、最新の知識の欠如や幻覚などの制限に直面している。
Retrieval-Augmented Generation (RAG)は、外部知識ベースを統合することでLLMの性能を高め、精度と知識カバレッジを大幅に向上させる追加のコンテキストを提供する。
しかしながら、これらの外部知識ベースを構築するには、しばしばかなりのリソースを必要とし、機密情報を含む可能性がある。
本稿では、RAGアプリケーションで使用されるプライベートデータベースから、スケーラブルな量のプライベートデータを抽出できるRAG-Thiefと呼ばれるエージェントベースの自動プライバシ攻撃を提案する。
我々は、RAGアプリケーションに関連するプライバシーリスクを体系的に研究し、LLMの脆弱性が民間の知識基盤を重大なプライバシーリスクに陥らせることを明らかにした。
従来のプロンプトインジェクション技術に依存する従来の手動攻撃とは異なり、RAG-Thiefは最初の逆クエリから始まり、モデル応答から学習し、できるだけ多くのチャンクを知識ベースから抽出するために、新しいクエリを段階的に生成する。
実験の結果,我々のRAG-Thiefは,OpenAIのGPTやByteDanceのCozeなど,ローカルマシンや実世界のプラットフォームにデプロイされたRAGアプリケーション内のプライベート知識ベースから70%以上の情報を抽出できることがわかった。
我々の発見は、現在のRAGアプリケーションにおけるプライバシー上の脆弱性を強調し、より強力な保護の必要性を強調します。
関連論文リスト
- Pirates of the RAG: Adaptively Attacking LLMs to Leak Knowledge Bases [11.101624331624933]
本稿では,RAGシステムにプライベート知識ベースを漏洩させるブラックボックス攻撃を提案する。
関連性に基づくメカニズムとアタッカーサイドのオープンソース LLM は、(隠された)知識ベースの大部分をリークする効果的なクエリの生成を好んでいる。
論文 参考訳(メタデータ) (2024-12-24T09:03:57Z) - Privacy-Preserving Retrieval Augmented Generation with Differential Privacy [25.896416088293908]
検索拡張生成(RAG)は、外部知識ソースから直接関連する情報を提供することで、大規模言語モデル(LLM)を支援する。
RAGは、外部データソースから機密情報を漏洩するリスクを出力する。
本研究では、データプライバシの正式な保証である差分プライバシ(DP)の下でRAGを探索する。
論文 参考訳(メタデータ) (2024-12-06T01:20:16Z) - Data Extraction Attacks in Retrieval-Augmented Generation via Backdoors [15.861833242429228]
本稿では,RAG(Retrieval-Augmented Generation)システムの知識データベースを対象としたデータ抽出攻撃について検討する。
この脆弱性を明らかにするために, LLM内にバックドアを作成するために, 微調整期間中に少量の有毒データを注入するバックドアRAGを提案する。
論文 参考訳(メタデータ) (2024-11-03T22:27:40Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented Generation (RAG)は、プロプライエタリおよびプライベートデータによる言語モデルを容易にする強力な技術である。
本研究では,プライベート検索データベースの漏洩に対するRAGシステムの脆弱性を実証する,新たな攻撃手法による実証的研究を行う。
論文 参考訳(メタデータ) (2024-02-23T18:35:15Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)が外部知識を活用することを可能にする。
既存のRAGモデルは、LLMを受動的情報受信者として扱うことが多い。
人間の学習行動を模倣するマルチエージェントフレームワークであるActiveRAGを紹介する。
論文 参考訳(メタデータ) (2024-02-21T06:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。