When LLMs meet open-world graph learning: a new perspective for unlabeled data uncertainty
- URL: http://arxiv.org/abs/2505.13989v2
- Date: Wed, 21 May 2025 04:23:56 GMT
- Title: When LLMs meet open-world graph learning: a new perspective for unlabeled data uncertainty
- Authors: Yanzhe Wen, Xunkai Li, Qi Zhang, Zhu Lei, Guang Zeng, Rong-Hua Li, Guoren Wang,
- Abstract summary: Large language models (LLMs) have significantly advanced text-attributed graph (TAG) learning.<n>Open-world Graph Assistant (OGA) is a framework that combines adaptive label traceability, which integrates semantics and topology for unknown-class rejection.<n> Comprehensive experiments demonstrate OGA's effectiveness and practicality.
- Score: 27.91526923088602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, large language models (LLMs) have significantly advanced text-attributed graph (TAG) learning. However, existing methods inadequately handle data uncertainty in open-world scenarios, especially concerning limited labeling and unknown-class nodes. Prior solutions typically rely on isolated semantic or structural approaches for unknown-class rejection, lacking effective annotation pipelines. To address these limitations, we propose Open-world Graph Assistant (OGA), an LLM-based framework that combines adaptive label traceability, which integrates semantics and topology for unknown-class rejection, and a graph label annotator to enable model updates using newly annotated nodes. Comprehensive experiments demonstrate OGA's effectiveness and practicality.
Related papers
- Vocabulary-free Fine-grained Visual Recognition via Enriched Contextually Grounded Vision-Language Model [52.01031460230826]
Traditional approaches rely heavily on fixed vocabularies and closed-set classification paradigms.<n>Recent research has demonstrated that combining large language models with vision-language models (VLMs) makes open-set recognition possible.<n>We propose our training-free method, Enriched-FineR, which demonstrates state-of-the-art results in fine-grained visual recognition.
arXiv Detail & Related papers (2025-07-30T20:06:01Z) - Few-Shot Graph Out-of-Distribution Detection with LLMs [34.42512005781724]
We propose a framework that combines the strengths of large language models (LLMs) and graph neural networks (GNNs) to enhance data efficiency in graph out-of-distribution (OOD) detection.<n>We show that LLM-GOOD significantly reduces human annotation costs and outperforms state-of-the-art baselines in terms of both ID classification accuracy and OOD detection performance.
arXiv Detail & Related papers (2025-03-28T02:37:18Z) - Zero-to-Strong Generalization: Eliciting Strong Capabilities of Large Language Models Iteratively without Gold Labels [75.77877889764073]
Large Language Models (LLMs) have demonstrated remarkable performance through supervised fine-tuning or in-context learning using gold labels.
This study explores whether solely utilizing unlabeled data can elicit strong model capabilities.
We propose a new paradigm termed zero-to-strong generalization.
arXiv Detail & Related papers (2024-09-19T02:59:44Z) - Enhancing Graph Neural Networks with Limited Labeled Data by Actively Distilling Knowledge from Large Language Models [30.867447814409623]
Graph neural networks (GNNs) have great ability in node classification, a fundamental task on graphs.
We propose a novel approach that integrates Large Language Models (LLMs) and GNNs.
Our model in improving node classification accuracy with considerably limited labeled data, surpassing state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2024-07-19T02:34:10Z) - Beyond the Known: Novel Class Discovery for Open-world Graph Learning [16.30962452905747]
We propose an Open-world gRAph neuraL network (ORAL) to tackle novel class discovery on graphs.
ORAL first detects correlations between classes through semi-supervised prototypical learning.
To fully explore multi-scale graph features for alleviating label deficiencies, ORAL generates pseudo-labels.
arXiv Detail & Related papers (2024-03-29T01:25:05Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
Multi-label recognition (MLR) with incomplete labels is very challenging.
Recent works strive to explore the image-to-label correspondence in the vision-language model, ie, CLIP, to compensate for insufficient annotations.
We advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior.
arXiv Detail & Related papers (2023-03-23T12:39:20Z) - Learning with Few Labeled Nodes via Augmented Graph Self-Training [36.97506256446519]
A GST (Augmented Graph Self-Training) framework is built with two new (i.e., structural and semantic) augmentation modules on top of a decoupled GST backbone.
We investigate whether this novel framework can learn an effective graph predictive model with extremely limited labeled nodes.
arXiv Detail & Related papers (2022-08-26T03:36:01Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
We propose a novel network architecture equipped with a novel meta-learning algorithm to solve this problem.
In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy.
Our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets.
arXiv Detail & Related papers (2021-12-18T00:11:56Z) - Noise-robust Graph Learning by Estimating and Leveraging Pairwise
Interactions [123.07967420310796]
This paper bridges the gap by proposing a pairwise framework for noisy node classification on graphs.
PI-GNN relies on the PI as a primary learning proxy in addition to the pointwise learning from the noisy node class labels.
Our proposed framework PI-GNN contributes two novel components: (1) a confidence-aware PI estimation model that adaptively estimates the PI labels, and (2) a decoupled training approach that leverages the estimated PI labels.
arXiv Detail & Related papers (2021-06-14T14:23:08Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
We propose a new graph meta-learning framework -- Graph Hallucination Networks (Meta-GHN)
Based on a new robustness-enhanced episodic training, Meta-GHN is meta-learned to hallucinate clean node representations from weakly-labeled data.
Extensive experiments demonstrate the superiority of Meta-GHN over existing graph meta-learning studies.
arXiv Detail & Related papers (2021-06-12T22:22:10Z) - Cyclic Label Propagation for Graph Semi-supervised Learning [52.102251202186025]
We introduce a novel framework for graph semi-supervised learning called CycProp.
CycProp integrates GNNs into the process of label propagation in a cyclic and mutually reinforcing manner.
In particular, our proposed CycProp updates the node embeddings learned by GNN module with the augmented information by label propagation.
arXiv Detail & Related papers (2020-11-24T02:55:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.