AUTOLAW: Enhancing Legal Compliance in Large Language Models via Case Law Generation and Jury-Inspired Deliberation
- URL: http://arxiv.org/abs/2505.14015v1
- Date: Tue, 20 May 2025 07:09:13 GMT
- Title: AUTOLAW: Enhancing Legal Compliance in Large Language Models via Case Law Generation and Jury-Inspired Deliberation
- Authors: Tai D. Nguyen, Long H. Pham, Jun Sun,
- Abstract summary: AutoLaw is a novel violation detection framework for domain-specific large language models (LLMs)<n>It combines adversarial data generation with a jury-inspired deliberation process to enhance legal compliance of LLMs.<n>Our results highlight the framework's ability to adaptively probe legal misalignments and deliver reliable, context-aware judgments.
- Score: 5.732271982985626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of domain-specific large language models (LLMs) in fields like law necessitates frameworks that account for nuanced regional legal distinctions, which are critical for ensuring compliance and trustworthiness. Existing legal evaluation benchmarks often lack adaptability and fail to address diverse local contexts, limiting their utility in dynamically evolving regulatory landscapes. To address these gaps, we propose AutoLaw, a novel violation detection framework that combines adversarial data generation with a jury-inspired deliberation process to enhance legal compliance of LLMs. Unlike static approaches, AutoLaw dynamically synthesizes case law to reflect local regulations and employs a pool of LLM-based "jurors" to simulate judicial decision-making. Jurors are ranked and selected based on synthesized legal expertise, enabling a deliberation process that minimizes bias and improves detection accuracy. Evaluations across three benchmarks: Law-SG, Case-SG (legality), and Unfair-TOS (policy), demonstrate AutoLaw's effectiveness: adversarial data generation improves LLM discrimination, while the jury-based voting strategy significantly boosts violation detection rates. Our results highlight the framework's ability to adaptively probe legal misalignments and deliver reliable, context-aware judgments, offering a scalable solution for evaluating and enhancing LLMs in legally sensitive applications.
Related papers
- NomicLaw: Emergent Trust and Strategic Argumentation in LLMs During Collaborative Law-Making [6.56837855642886]
We introduce NomicLaw, a structured multi-agent simulation where LLMs engage in collaborative law-making.<n>We quantitatively measure trust and reciprocity via voting patterns and qualitatively assess how agents use strategic language to justify proposals.<n>Our results highlight the latent social reasoning and persuasive capabilities of ten open-source LLMs and provide insights into the design of future AI systems.
arXiv Detail & Related papers (2025-08-07T12:49:44Z) - Can Group Relative Policy Optimization Improve Thai Legal Reasoning and Question Answering? [7.42457277619017]
We introduce an approach aligning Thai legal question answering systems with improved law citation accuracy and better response quality.<n>Our approach leverages BGE-M3 embeddings as a cost-efficient semantic-similarity reward.<n>Experiments on the NitiBench benchmark demonstrate substantial improvements.
arXiv Detail & Related papers (2025-07-13T14:05:48Z) - RLJP: Legal Judgment Prediction via First-Order Logic Rule-enhanced with Large Language Models [58.69183479148083]
Legal Judgment Prediction (LJP) is a pivotal task in legal AI.<n>Existing LJP models integrate judicial precedents and legal knowledge for high performance.<n>But they neglect legal reasoning logic, a critical component of legal judgments requiring rigorous logical analysis.<n>This paper proposes a rule-enhanced legal judgment prediction framework based on first-order logic (FOL) formalism and comparative learning (CL)
arXiv Detail & Related papers (2025-05-27T14:50:21Z) - Retrieval Augmented Generation-based Large Language Models for Bridging Transportation Cybersecurity Legal Knowledge Gaps [14.261871331519567]
This study introduces a Retrieval-Augmented Generation (RAG) based Large Language Model (LLM) framework designed to support policymakers.<n>The framework focuses on reducing hallucinations in LLMs by using a curated set of domain-specific questions to guide response generation.<n>Our analysis shows that the proposed RAG-based LLM outperforms leading commercial LLMs across four evaluation metrics.
arXiv Detail & Related papers (2025-05-23T23:40:10Z) - A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
We propose a transparent law reasoning schema enriched with hierarchical factum probandum, evidence, and implicit experience.<n>Inspired by this schema, we introduce the challenging task, which takes a textual case description and outputs a hierarchical structure justifying the final decision.<n>This benchmark paves the way for transparent and accountable AI-assisted law reasoning in the Intelligent Court''
arXiv Detail & Related papers (2025-03-02T10:26:54Z) - LegalAgentBench: Evaluating LLM Agents in Legal Domain [53.70993264644004]
LegalAgentBench is a benchmark specifically designed to evaluate LLM Agents in the Chinese legal domain.<n>LegalAgentBench includes 17 corpora from real-world legal scenarios and provides 37 tools for interacting with external knowledge.
arXiv Detail & Related papers (2024-12-23T04:02:46Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
We propose a novel TRansformer-based Attribution framework using Contrastive Embeddings called TRACE.
We show that TRACE significantly improves the ability to attribute sources accurately, making it a valuable tool for enhancing the reliability and trustworthiness of large language models.
arXiv Detail & Related papers (2024-07-06T07:19:30Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
This paper explores Large Language Models' (LLMs) capabilities in applying tax law.
Our experiments demonstrate emerging legal understanding capabilities, with improved performance in each subsequent OpenAI model release.
Findings indicate that LLMs, particularly when combined with prompting enhancements and the correct legal texts, can perform at high levels of accuracy but not yet at expert tax lawyer levels.
arXiv Detail & Related papers (2023-06-12T12:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.