Challenges and Limitations in the Synthetic Generation of mHealth Sensor Data
- URL: http://arxiv.org/abs/2505.14206v1
- Date: Tue, 20 May 2025 11:05:06 GMT
- Title: Challenges and Limitations in the Synthetic Generation of mHealth Sensor Data
- Authors: Flavio Di Martino, Franca Delmastro,
- Abstract summary: We introduce a novel evaluation framework designed to measure both the intrinsic quality of synthetic data and its utility in downstream predictive tasks.<n>Our findings reveal critical limitations in the existing approaches, particularly in maintaining cross-modal consistency.<n>We present our future research directions to enhance synthetic time series generation and improve the applicability of generative models in mHealth.
- Score: 3.10770247120758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread adoption of mobile sensors has the potential to provide massive and heterogeneous time series data, driving Artificial Intelligence applications in mHealth. However, data collection remains limited due to stringent ethical regulations, privacy concerns, and other constraints, hindering progress in the field. Synthetic data generation, particularly through Generative Adversarial Networks and Diffusion Models, has emerged as a promising solution to address both data scarcity and privacy issues. Yet, these models are often limited to short-term, unimodal signal patterns. This paper presents a systematic evaluation of state-of-the-art generative models for time series synthesis, with a focus on their ability to jointly handle multi-modality, long-range dependencies, and conditional generation-key challenges in the mHealth domain. To ensure a fair comparison, we introduce a novel evaluation framework designed to measure both the intrinsic quality of synthetic data and its utility in downstream predictive tasks. Our findings reveal critical limitations in the existing approaches, particularly in maintaining cross-modal consistency, preserving temporal coherence, and ensuring robust performance in train-on-synthetic, test-on-real, and data augmentation scenarios. Finally, we present our future research directions to enhance synthetic time series generation and improve the applicability of generative models in mHealth.
Related papers
- Empowering Time Series Analysis with Synthetic Data: A Survey and Outlook in the Era of Foundation Models [104.17057231661371]
Time series analysis is crucial for understanding dynamics of complex systems.<n>Recent advances in foundation models have led to task-agnostic Time Series Foundation Models (TSFMs) and Large Language Model-based Time Series Models (TSLLMs)<n>Their success depends on large, diverse, and high-quality datasets, which are challenging to build due to regulatory, diversity, quality, and quantity constraints.<n>This survey provides a comprehensive review of synthetic data for TSFMs and TSLLMs, analyzing data generation strategies, their role in model pretraining, fine-tuning, and evaluation, and identifying future research directions.
arXiv Detail & Related papers (2025-03-14T13:53:46Z) - KIPPS: Knowledge infusion in Privacy Preserving Synthetic Data
Generation [0.0]
Generative Deep Learning models struggle to model discrete and non-Gaussian features that have domain constraints.
Generative models create synthetic data that repeats sensitive features, which is a privacy risk.
This paper proposes a novel model, KIPPS, that infuses Domain and Regulatory Knowledge from Knowledge Graphs into Generative Deep Learning models for enhanced Privacy Preserving Synthetic data generation.
arXiv Detail & Related papers (2024-09-25T19:50:03Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Protect and Extend -- Using GANs for Synthetic Data Generation of
Time-Series Medical Records [1.9749268648715583]
This research compares state-of-the-art GAN-based models for synthetic data generation to generate time-series synthetic medical records of dementia patients.
Our experiments indicate the superiority of the privacy-preserving GAN (PPGAN) model over other models regarding privacy preservation.
arXiv Detail & Related papers (2024-02-21T10:24:34Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
Time series data are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations.
We introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series.
arXiv Detail & Related papers (2023-05-19T10:11:21Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Generating synthetic multi-dimensional molecular-mediator time series
data for artificial intelligence-based disease trajectory forecasting and
drug development digital twins: Considerations [0.0]
The use of synthetic data is recognized as a crucial step in the development of neural network-based Artificial Intelligence (AI) systems.
Insufficiency of statistical and data-centric machine learning means of generating this type of synthetic data is due to a combination of factors.
The generation of synthetic data that accounts for the identified factors of multi-dimensional time series data is an essential capability for the development of mediator-biomarker based AI forecasting systems.
arXiv Detail & Related papers (2023-03-16T03:13:53Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
generative adversarial network (GAN) entitled EHR-M-GAN which synthesizes textitmixed-type timeseries EHR data.
We have validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients.
arXiv Detail & Related papers (2021-12-22T17:17:34Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
We develop a differentially private framework for synthetic data generation using R'enyi differential privacy.
Our approach builds on convolutional autoencoders and convolutional generative adversarial networks to preserve some of the critical characteristics of the generated synthetic data.
We demonstrate that our model outperforms existing state-of-the-art models under the same privacy budget.
arXiv Detail & Related papers (2020-12-22T01:03:49Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
The NeurIPS 2020 Hide-and-Seek Privacy Challenge is a novel two-tracked competition to accelerate progress in tackling both problems.
In our head-to-head format, participants in the synthetic data generation track (i.e. "hiders") and the patient re-identification track (i.e. "seekers") are directly pitted against each other by way of a new, high-quality intensive care time-series dataset.
arXiv Detail & Related papers (2020-07-23T15:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.