論文の概要: Safety Devolution in AI Agents
- arxiv url: http://arxiv.org/abs/2505.14215v1
- Date: Tue, 20 May 2025 11:21:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.089867
- Title: Safety Devolution in AI Agents
- Title(参考訳): AIエージェントの安全破壊
- Authors: Cheng Yu, Benedikt Stroebl, Diyi Yang, Orestis Papakyriakopoulos,
- Abstract要約: 本研究では,検索アクセスの拡大がモデル信頼性,バイアス伝搬,有害コンテンツ生成に与える影響について検討した。
整列 LLM 上に構築された検索補助エージェントは、検索なしでの無検閲モデルよりも安全でない振る舞いをすることが多い。
これらの発見は、検索が強化され、ますます自律的なAIシステムにおいて、公正性と信頼性を確保するための堅牢な緩和戦略の必要性を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 56.482973617087254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As retrieval-augmented AI agents become more embedded in society, their safety properties and ethical behavior remain insufficiently understood. In particular, the growing integration of LLMs and AI agents raises critical questions about how they engage with and are influenced by their environments. This study investigates how expanding retrieval access, from no external sources to Wikipedia-based retrieval and open web search, affects model reliability, bias propagation, and harmful content generation. Through extensive benchmarking of censored and uncensored LLMs and AI Agents, our findings reveal a consistent degradation in refusal rates, bias sensitivity, and harmfulness safeguards as models gain broader access to external sources, culminating in a phenomenon we term safety devolution. Notably, retrieval-augmented agents built on aligned LLMs often behave more unsafely than uncensored models without retrieval. This effect persists even under strong retrieval accuracy and prompt-based mitigation, suggesting that the mere presence of retrieved content reshapes model behavior in structurally unsafe ways. These findings underscore the need for robust mitigation strategies to ensure fairness and reliability in retrieval-augmented and increasingly autonomous AI systems.
- Abstract(参考訳): 検索強化されたAIエージェントが社会に浸透するにつれて、その安全性と倫理的行動はいまだに十分に理解されていない。
特に、LLMとAIエージェントの統合の増大は、彼らがどのように関与し、環境の影響を受けているかについて、重要な疑問を提起する。
本研究では,外部ソースからウィキペディアベースの検索やオープンウェブ検索への検索アクセスの拡大が,モデルの信頼性,バイアス伝搬,有害コンテンツ生成にどのように影響するかを検討する。
検閲および非検閲のLLMとAIエージェントの広範なベンチマークを通じて、モデルが外部ソースへの広範なアクセスを得るにつれて、拒絶率、バイアス感度、有害性保護の一貫性の低下が明らかとなり、安全破壊と呼ばれる現象が頂点に達した。
特に、LLM上に構築された検索強化エージェントは、検索なしでの無検閲モデルよりも安全でない振る舞いをすることが多い。
この効果は、高い検索精度とプロンプトに基づく緩和の下でも持続し、検索されたコンテンツの存在は、構造的に不安全な方法でモデルの振舞いを取り戻すことを示唆している。
これらの発見は、検索が強化され、ますます自律的なAIシステムにおいて、公正性と信頼性を確保するための堅牢な緩和戦略の必要性を浮き彫りにしている。
関連論文リスト
- TrustRAG: Enhancing Robustness and Trustworthiness in RAG [31.231916859341865]
TrustRAGは、世代ごとに取得される前に、妥協されたコンテンツと無関係なコンテンツを体系的にフィルタリングするフレームワークである。
TrustRAGは、既存のアプローチと比較して、検索精度、効率、攻撃抵抗を大幅に改善している。
論文 参考訳(メタデータ) (2025-01-01T15:57:34Z) - Towards More Robust Retrieval-Augmented Generation: Evaluating RAG Under Adversarial Poisoning Attacks [45.07581174558107]
Retrieval-Augmented Generation (RAG) システムは幻覚を緩和するための有望な解決策として登場した。
RAGシステムは、検索データベースに注入された悪意のあるパスが、モデルを誤誘導し、事実的に誤ったアウトプットを発生させるような、敵の毒殺攻撃に弱い。
本稿では,RAGシステムの検索と生成の両要素について検討し,攻撃に対するロバスト性を高める方法について考察する。
論文 参考訳(メタデータ) (2024-12-21T17:31:52Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - How Far Are LLMs from Believable AI? A Benchmark for Evaluating the Believability of Human Behavior Simulation [46.42384207122049]
我々は,人間の振る舞いをシミュレートする際の大規模言語モデル (LLM) の信頼性を評価するために SimulateBench を設計する。
SimulateBenchに基づいて、文字をシミュレートする際、広く使われている10個のLLMの性能を評価する。
論文 参考訳(メタデータ) (2023-12-28T16:51:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。