Path-integral molecular dynamics with actively-trained and universal machine learning force fields
- URL: http://arxiv.org/abs/2505.14245v1
- Date: Tue, 20 May 2025 11:55:22 GMT
- Title: Path-integral molecular dynamics with actively-trained and universal machine learning force fields
- Authors: A. A. Solovykh, N. E. Rybin, I. S. Novikov, A. V. Shapeev,
- Abstract summary: Accounting for nuclear quantum effects (NQEs) can significantly alter material properties at finite temperatures.<n>Machine-learned interatomic potentials offer a solution to this challenge.<n> interface was developed to integrate moment tensor potentials (MTPs) from the MLIP-2 software package into PIMD calculations.<n>Results were compared with experimental data, quasi-harmonic approximation calculations, and predictions from the universal machine learning force field MatterSim.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accounting for nuclear quantum effects (NQEs) can significantly alter material properties at finite temperatures. Atomic modeling using the path-integral molecular dynamics (PIMD) method can fully account for such effects, but requires computationally efficient and accurate models of interatomic interactions. Empirical potentials are fast but may lack sufficient accuracy, whereas quantum-mechanical calculations are highly accurate but computationally expensive. Machine-learned interatomic potentials offer a solution to this challenge, providing near-quantum-mechanical accuracy while maintaining high computational efficiency compared to density functional theory (DFT) calculations. In this context, an interface was developed to integrate moment tensor potentials (MTPs) from the MLIP-2 software package into PIMD calculations using the i-PI software package. This interface was then applied to active learning of potentials and to investigate the influence of NQEs on material properties, namely the temperature dependence of lattice parameters and thermal expansion coefficients, as well as radial distribution functions, for lithium hydride (LiH) and silicon (Si) systems. The results were compared with experimental data, quasi-harmonic approximation calculations, and predictions from the universal machine learning force field MatterSim. These comparisons demonstrated the high accuracy and effectiveness of the MTP-PIMD approach.
Related papers
- Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems [52.19558333652367]
We present finite-range embeddings (FiRE) for accurate large-scale ab-initio electronic structure calculations.<n>FiRE reduces the complexity of neural-network variational Monte Carlo (NN-VMC) by $sim ntextel$, the number of electrons.<n>We validate our method's accuracy on various challenging systems, including biochemical compounds and organometallic compounds.
arXiv Detail & Related papers (2025-04-08T14:28:54Z) - Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials [0.602276990341246]
We use FieldSchNet to replace QM/MM electrostatic embedding with its ML/MM counterpart for nonadiabatic excited state trajectories.<n>Our results demonstrate that the ML/MM model reproduces the electronic kinetics and structural rearrangements of QM/MM surface hopping reference simulations.
arXiv Detail & Related papers (2025-01-28T14:14:43Z) - Constructing accurate machine-learned potentials and performing highly efficient atomistic simulations to predict structural and thermal properties [6.875235178607604]
We introduce a neuroevolution potential (NEP) trained on a dataset generated from ab initio molecular dynamics (AIMD) simulations.
We calculate the phonon density of states (DOS) and radial distribution function (RDF) using both machine learning potentials.
While the MTP potential offers slightly higher accuracy, the NEP achieves a remarkable 41-fold increase in computational speed.
arXiv Detail & Related papers (2024-11-16T23:16:59Z) - Reliable machine learning potentials based on artificial neural network
for graphene [2.115174610040722]
Special 2D structure of graphene enables it to exhibit a wide range of peculiar material properties.
molecular dynamics (MD) simulations are widely adopted for understanding the microscopic origins of their unique properties.
An artificial neural network based interatomic potential has been developed for graphene to represent the potential energy surface.
arXiv Detail & Related papers (2023-06-12T17:12:08Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
Reactive force fields based on physics or machine learning can be used to bridge the gap in time and length scales.
We introduce the Gaussian multi-pole (GMP) featurization scheme that utilizes physically-relevant multi-pole expansions of the electron density around atoms.
We demonstrate that GMP-based models can achieve chemical accuracy for the QM9 dataset, and their accuracy remains reasonable even when extrapolating to new elements.
arXiv Detail & Related papers (2021-02-04T03:11:00Z) - Microcanonical and finite temperature ab initio molecular dynamics
simulations on quantum computers [0.0]
Ab initio molecular dynamics (AIMD) is a powerful tool to predict properties of molecular and condensed matter systems.
We provide solutions for the alleviation of the statistical noise associated to the measurements of the expectation values of energies and forces.
We also propose a Langevin dynamics algorithm for the simulation of canonical, i.e., constant temperature, dynamics.
arXiv Detail & Related papers (2020-08-18T20:24:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.