Exploring Jailbreak Attacks on LLMs through Intent Concealment and Diversion
- URL: http://arxiv.org/abs/2505.14316v1
- Date: Tue, 20 May 2025 13:03:15 GMT
- Title: Exploring Jailbreak Attacks on LLMs through Intent Concealment and Diversion
- Authors: Tiehan Cui, Yanxu Mao, Peipei Liu, Congying Liu, Datao You,
- Abstract summary: Large language models (LLMs) have achieved remarkable advancements, but their security remains a pressing concern.<n>One major threat is jailbreak attacks, where adversarial prompts bypass model safeguards to generate harmful or objectionable content.<n>We propose ICE, a novel black-box jailbreak method that employs Intent Concealment and divErsion to effectively circumvent security constraints.
- Score: 1.0291559330120414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although large language models (LLMs) have achieved remarkable advancements, their security remains a pressing concern. One major threat is jailbreak attacks, where adversarial prompts bypass model safeguards to generate harmful or objectionable content. Researchers study jailbreak attacks to understand security and robustness of LLMs. However, existing jailbreak attack methods face two main challenges: (1) an excessive number of iterative queries, and (2) poor generalization across models. In addition, recent jailbreak evaluation datasets focus primarily on question-answering scenarios, lacking attention to text generation tasks that require accurate regeneration of toxic content. To tackle these challenges, we propose two contributions: (1) ICE, a novel black-box jailbreak method that employs Intent Concealment and divErsion to effectively circumvent security constraints. ICE achieves high attack success rates (ASR) with a single query, significantly improving efficiency and transferability across different models. (2) BiSceneEval, a comprehensive dataset designed for assessing LLM robustness in question-answering and text-generation tasks. Experimental results demonstrate that ICE outperforms existing jailbreak techniques, revealing critical vulnerabilities in current defense mechanisms. Our findings underscore the necessity of a hybrid security strategy that integrates predefined security mechanisms with real-time semantic decomposition to enhance the security of LLMs.
Related papers
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
We propose Secure Tug-of-War (SecTOW) to enhance the security of multimodal large language models (MLLMs)<n>SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO)<n>We show that SecTOW significantly improves security while preserving general performance.
arXiv Detail & Related papers (2025-07-29T17:39:48Z) - Cross-Modal Obfuscation for Jailbreak Attacks on Large Vision-Language Models [11.867355323884217]
We present a novel black-box jailbreak attack framework that decomposes malicious prompts into semantically benign visual and textual fragments.<n>Our approach supports adjustable reasoning complexity and requires significantly fewer queries than prior attacks, enabling both stealth and efficiency.
arXiv Detail & Related papers (2025-06-20T05:30:25Z) - Scalable Defense against In-the-wild Jailbreaking Attacks with Safety Context Retrieval [25.17143802138141]
Large Language Models (LLMs) are vulnerable to jailbreaking attacks, wherein adversaries exploit carefully engineered prompts to induce harmful or unethical responses.<n>We propose Safety Context Retrieval (SCR), a scalable and robust safeguarding paradigm for LLMs against jailbreaking.
arXiv Detail & Related papers (2025-05-21T16:58:14Z) - Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
We propose a novel jailbreak attack framework, inspired by cognitive decomposition and biases in human cognition.<n>We employ cognitive decomposition to reduce the complexity of malicious prompts and relevance bias to reorganize prompts.<n>We also introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm.
arXiv Detail & Related papers (2025-05-03T05:28:11Z) - JailDAM: Jailbreak Detection with Adaptive Memory for Vision-Language Model [25.204224437843365]
Multimodal large language models (MLLMs) excel in vision-language tasks but pose significant risks of generating harmful content.<n>Jailbreak attacks refer to intentional manipulations that bypass safety mechanisms in models, leading to the generation of inappropriate or unsafe content.<n>We introduce a test-time adaptive framework called JAILDAM to address these issues.
arXiv Detail & Related papers (2025-04-03T05:00:28Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks.<n>We propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge.
arXiv Detail & Related papers (2025-03-05T18:01:05Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.<n>We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)<n>We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.<n>We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.<n>Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models [47.576957746503666]
BlackDAN is an innovative black-box attack framework with multi-objective optimization.<n>It generates high-quality prompts that effectively facilitate jailbreaking.<n>It maintains contextual relevance and minimize detectability.
arXiv Detail & Related papers (2024-10-13T11:15:38Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks.
Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40%.
arXiv Detail & Related papers (2024-06-28T11:35:54Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.