Cross-Modal Obfuscation for Jailbreak Attacks on Large Vision-Language Models
- URL: http://arxiv.org/abs/2506.16760v1
- Date: Fri, 20 Jun 2025 05:30:25 GMT
- Title: Cross-Modal Obfuscation for Jailbreak Attacks on Large Vision-Language Models
- Authors: Lei Jiang, Zixun Zhang, Zizhou Wang, Xiaobing Sun, Zhen Li, Liangli Zhen, Xiaohua Xu,
- Abstract summary: We present a novel black-box jailbreak attack framework that decomposes malicious prompts into semantically benign visual and textual fragments.<n>Our approach supports adjustable reasoning complexity and requires significantly fewer queries than prior attacks, enabling both stealth and efficiency.
- Score: 11.867355323884217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) demonstrate exceptional performance across multimodal tasks, yet remain vulnerable to jailbreak attacks that bypass built-in safety mechanisms to elicit restricted content generation. Existing black-box jailbreak methods primarily rely on adversarial textual prompts or image perturbations, yet these approaches are highly detectable by standard content filtering systems and exhibit low query and computational efficiency. In this work, we present Cross-modal Adversarial Multimodal Obfuscation (CAMO), a novel black-box jailbreak attack framework that decomposes malicious prompts into semantically benign visual and textual fragments. By leveraging LVLMs' cross-modal reasoning abilities, CAMO covertly reconstructs harmful instructions through multi-step reasoning, evading conventional detection mechanisms. Our approach supports adjustable reasoning complexity and requires significantly fewer queries than prior attacks, enabling both stealth and efficiency. Comprehensive evaluations conducted on leading LVLMs validate CAMO's effectiveness, showcasing robust performance and strong cross-model transferability. These results underscore significant vulnerabilities in current built-in safety mechanisms, emphasizing an urgent need for advanced, alignment-aware security and safety solutions in vision-language systems.
Related papers
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
We propose Secure Tug-of-War (SecTOW) to enhance the security of multimodal large language models (MLLMs)<n>SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO)<n>We show that SecTOW significantly improves security while preserving general performance.
arXiv Detail & Related papers (2025-07-29T17:39:48Z) - SafePTR: Token-Level Jailbreak Defense in Multimodal LLMs via Prune-then-Restore Mechanism [123.54980913741828]
Multimodal Large Language Models (MLLMs) extend LLMs to support visual reasoning.<n>MLLMs are susceptible to multimodal jailbreak attacks and hindering their safe deployment.<n>We propose Safe Prune-then-Restore (SafePTR), a training-free defense framework that selectively prunes harmful tokens at vulnerable layers while restoring benign features at subsequent layers.
arXiv Detail & Related papers (2025-07-02T09:22:03Z) - Align is not Enough: Multimodal Universal Jailbreak Attack against Multimodal Large Language Models [83.80177564873094]
We propose a unified multimodal universal jailbreak attack framework.<n>We evaluate the undesirable context generation of MLLMs like LLaVA, Yi-VL, MiniGPT4, MiniGPT-v2, and InstructBLIP.<n>This study underscores the urgent need for robust safety measures in MLLMs.
arXiv Detail & Related papers (2025-06-02T04:33:56Z) - AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models [0.0]
Large Language Models (LLMs) continue to exhibit vulnerabilities to jailbreaking attacks.<n>We present AutoAdv, a novel framework that automates adversarial prompt generation.<n>We show that our attacks achieve jailbreak success rates of up to 86% for harmful content generation.
arXiv Detail & Related papers (2025-04-18T08:38:56Z) - MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks [85.3303135160762]
MIRAGE is a novel framework that exploits narrative-driven context and role immersion to circumvent safety mechanisms in Multimodal Large Language Models.<n>It achieves state-of-the-art performance, improving attack success rates by up to 17.5% over the best baselines.<n>We demonstrate that role immersion and structured semantic reconstruction can activate inherent model biases, facilitating the model's spontaneous violation of ethical safeguards.
arXiv Detail & Related papers (2025-03-24T20:38:42Z) - BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models [47.576957746503666]
BlackDAN is an innovative black-box attack framework with multi-objective optimization.<n>It generates high-quality prompts that effectively facilitate jailbreaking.<n>It maintains contextual relevance and minimize detectability.
arXiv Detail & Related papers (2024-10-13T11:15:38Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
Multimodal Large Language Models (MLLMs) extend the capacity of LLMs to understand multimodal information comprehensively.
These models are susceptible to jailbreak attacks, where malicious users can break the safety alignment of the target model and generate misleading and harmful answers.
We propose Cross-modality Information DEtectoR (CIDER), a plug-and-play jailbreaking detector designed to identify maliciously perturbed image inputs.
arXiv Detail & Related papers (2024-07-31T15:02:46Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.