論文の概要: Dual Decomposition of Weights and Singular Value Low Rank Adaptation
- arxiv url: http://arxiv.org/abs/2505.14367v1
- Date: Tue, 20 May 2025 13:49:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.272553
- Title: Dual Decomposition of Weights and Singular Value Low Rank Adaptation
- Title(参考訳): 重みの二重分解と特異値低ランク適応
- Authors: Jialong Han, Si Zhang, Ke Zhang,
- Abstract要約: 重み行列を大きさと方向成分に分解する新しいアプローチであるDuDeを提案する。
評価の結果,MMLUでは48.35%,GSM8Kでは62.53%(pm$1.59)の精度が得られた。
- 参考スコア(独自算出の注目度): 9.048461365342204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) has emerged as a critical paradigm for adapting Large Language Models (LLMs) to downstream tasks, among which Low-rank Adaptation (LoRA) represents one of the most widely adopted methodologies. However, existing LoRA-based approaches exhibit two fundamental limitations: unstable training dynamics and inefficient knowledge transfer from pre-trained models, both stemming from random initialization of adapter parameters. To overcome these challenges, we propose DuDe, a novel approach that decomposes weight matrices into magnitude and direction components, employing Singular Value Decomposition (SVD) for principled initialization. Our comprehensive evaluation demonstrates DuDe's superior performance and robustness, achieving up to 48.35\% accuracy on MMLU and 62.53\% ($\pm$ 1.59) accuracy on GSM8K. Our theoretical analysis and empirical validation collectively demonstrate that DuDe's decomposition strategy enhances optimization stability and better preserves pre-trained representations, particularly for domain-specific tasks requiring specialized knowledge. The combination of robust empirical performance and rigorous theoretical foundations establishes DuDe as a significant contribution to PEFT methodologies for LLMs.
- Abstract(参考訳): パラメータ効率の良いファインチューニング(PEFT)は、Low-rank Adaptation(LoRA)が最も広く採用されている手法の1つである下流タスクにLarge Language Models(LLM)を適用するための重要なパラダイムとして登場した。
しかし、既存のLoRAベースのアプローチでは、不安定なトレーニングダイナミクスと、事前訓練されたモデルからの非効率な知識伝達の2つの基本的な制限が示されており、どちらもアダプタパラメータのランダムな初期化に由来する。
これらの課題を克服するために,重み行列を大きさと方向の成分に分解する新しい手法であるDuDeを提案し,Singular Value Decomposition (SVD) を原理的初期化に用いた。
我々の総合評価はDuDeの優れた性能とロバスト性を示し、MMLUでは48.35\%、GSM8Kでは62.53\%($1.59)の精度を達成した。
我々の理論的分析と実証的検証は、DuDeの分解戦略が最適化の安定性を高め、事前訓練された表現、特に専門知識を必要とするドメイン固有のタスクをよりよく保存することを示した。
堅牢な経験的性能と厳密な理論的基礎の組み合わせにより、DuDeはLLMのPEFT方法論への重要な貢献として確立されている。
関連論文リスト
- MoL for LLMs: Dual-Loss Optimization to Enhance Domain Expertise While Preserving General Capabilities [0.0]
本稿では,ドメイン固有および汎用コーパスの最適化目標を分離する新しいフレームワークであるMixture of Losses (MoL)を提案する。
具体的には、クロスエントロピー(CE)損失は知識獲得を保証するためにドメイン・コーパスに適用され、一方、Kulback-Leibler(KL)の分散は、一般的なコーパストレーニングとベースモデルの基本的な能力とを一致させる。
論文 参考訳(メタデータ) (2025-05-17T15:12:47Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
大規模言語モデルの推論効率を向上させるために,Unsupervised Prefix Fine-Tuning (UPFT)を導入した。
UPFTはラベル付きデータや徹底的なサンプリングの必要性を取り除く。
実験の結果,UPFTは教師付き手法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2025-03-04T18:56:03Z) - DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation [32.369133126167085]
そこで我々は,理論上基礎を成し,モジュールワイドなLoRAを実現する,DiffoRAと呼ばれる新しいPEFT方式を提案する。
DiffoRAの中核には微分適応行列(DAM)があり、どのモジュールが最も適しており、微調整に不可欠かを決定する。
提案手法は,様々なベンチマークにおいて,最先端のベースラインに対して最高のモデル精度を実現する。
論文 参考訳(メタデータ) (2025-02-13T02:41:34Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
Reward-Guided Speculative Decoding (RSD)は,大規模言語モデル(LLM)における推論の効率向上を目的とした新しいフレームワークである。
RSDは、厳密な偏りを強制する既存の投機的復号法とは対照的に、制御されたバイアスをハイリワード出力の優先順位付けに取り入れている。
RSDは,対象モデルのみでの復号化に対して,高い効率向上を実現し,並列復号法よりも高い精度を実現している。
論文 参考訳(メタデータ) (2025-01-31T17:19:57Z) - Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques [65.55451717632317]
PbMARL(Preference-based Multi-Agent Reinforcement Learning)について検討する。
一般ゲームにおける嗜好のみのオフラインデータセットからナッシュ平衡を同定する。
以上の結果から,PbMARLの多面的アプローチが示唆された。
論文 参考訳(メタデータ) (2024-09-01T13:14:41Z) - Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization [28.977757627384165]
ドメイン・ドメイン(DG)は、限られたトレーニングデータと見つからないテストデータの間の分散シフトが発生したとき、モデルの性能劣化を避けることを目的としている。
近年、膨大なパラメータを持つ基礎モデルは、膨大なデータセットで事前訓練されており、強力な一般化能力を示している。
我々のフレームワークは5つのDGベンチマークでSOTA性能を実現し、テストコストを増すことなく少数のパラメータをトレーニングするのみである。
論文 参考訳(メタデータ) (2024-07-21T07:50:49Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。