論文の概要: Beyond the First Error: Process Reward Models for Reflective Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2505.14391v1
- Date: Tue, 20 May 2025 14:12:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.336415
- Title: Beyond the First Error: Process Reward Models for Reflective Mathematical Reasoning
- Title(参考訳): 最初のエラーを超えて: 反射的数学的推論のためのプロセスリワードモデル
- Authors: Zhaohui Yang, Chenghua He, Xiaowen Shi, Linjing Li, Qiyue Yin, Shihong Deng, Daxin Jiang,
- Abstract要約: 本研究では,長いCoT推論プロセスのスコアリングに特化して設計されたPRMのための新しいデータアノテーション手法を提案する。
本稿では, 誤り伝播と誤認識の概念を導入し, PRMの効果的な自己訂正行動と誤ったステップに基づく推論の両方を識別する能力を高めた。
我々のPRMは,探索誘導,BoN,F1スコアなど,様々な指標で優れた性能を実現している。
- 参考スコア(独自算出の注目度): 49.21525229904197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many studies focus on data annotation techniques for training effective PRMs. However, current methods encounter a significant issue when applied to long CoT reasoning processes: they tend to focus solely on the first incorrect step and all preceding steps, assuming that all subsequent steps are incorrect. These methods overlook the unique self-correction and reflection mechanisms inherent in long CoT, where correct reasoning steps may still occur after initial reasoning mistakes. To address this issue, we propose a novel data annotation method for PRMs specifically designed to score the long CoT reasoning process. Given that under the reflection pattern, correct and incorrect steps often alternate, we introduce the concepts of Error Propagation and Error Cessation, enhancing PRMs' ability to identify both effective self-correction behaviors and reasoning based on erroneous steps. Leveraging an LLM-based judger for annotation, we collect 1.7 million data samples to train a 7B PRM and evaluate it at both solution and step levels. Experimental results demonstrate that compared to existing open-source PRMs and PRMs trained on open-source datasets, our PRM achieves superior performance across various metrics, including search guidance, BoN, and F1 scores. Compared to widely used MC-based annotation methods, our annotation approach not only achieves higher data efficiency but also delivers superior performance. Detailed analysis is also conducted to demonstrate the stability and generalizability of our method.
- Abstract(参考訳): 多くの研究は、効果的なPRMを訓練するためのデータアノテーション技術に焦点を当てている。
しかしながら、現在のメソッドは、長いCoT推論プロセスに適用した場合、重大な問題に直面する。
これらの手法は、長いCoTに固有の独自の自己補正と反射機構を見落としている。
そこで本研究では,長いCoT推論プロセスのスコアリングに特化して設計されたPRMのための新しいデータアノテーション手法を提案する。
反射パターンの下では、しばしば正しいステップと間違ったステップが交互に現れることを考慮し、誤り伝播と誤セッセーションの概念を導入し、PRMが効果的な自己訂正行動と誤ったステップに基づく推論の両方を識別する能力を高める。
LLMベースのアノテーション判断器を活用して、170万のデータサンプルを収集し、7B PRMをトレーニングし、ソリューションレベルとステップレベルの両方で評価する。
実験の結果,既存のオープンソースPRMやPRMがオープンソースデータセットでトレーニングされているのに対し,PRMは検索ガイダンス,BoN,F1スコアなど,さまざまな指標で優れたパフォーマンスを実現していることがわかった。
広く使われているMCベースのアノテーション手法と比較して、アノテーションアプローチは高いデータ効率を達成するだけでなく、優れたパフォーマンスをもたらす。
また, 本手法の安定性と一般化性を示すために, 詳細な解析を行った。
関連論文リスト
- R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
プロセス・リワード・モデル(Process Reward Models, PRM)は、各推論ステップを評価することによって、有望なソリューションとして登場した。
既存のPRMは評価スコアを直接出力し、学習効率と評価精度の両方を制限する。
推論駆動プロセスリワードモデリング(R-PRM)を提案する。
R-PRMは限られたアノテーションからシードデータを生成し、効果的にモデルの推論能力をブートストラップします。
論文 参考訳(メタデータ) (2025-03-27T09:23:08Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
大規模言語モデルの推論効率を向上させるために,Unsupervised Prefix Fine-Tuning (UPFT)を導入した。
UPFTはラベル付きデータや徹底的なサンプリングの必要性を取り除く。
実験の結果,UPFTは教師付き手法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2025-03-04T18:56:03Z) - AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence [29.551802573731305]
本稿では,モデルが次の単語を予測する自信に基づいて推論ステップを分割する手法であるAdaptiveStepを提案する。
数理推論およびコード生成タスクにおいて,AdaptiveStep-trained PRMを用いた実験により実効性を示す。
論文 参考訳(メタデータ) (2025-02-19T18:35:55Z) - Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning [11.15613673478208]
プロセス・リワード・モデル (Process Reward Model, PRM) は数学的推論において重要な役割を担い、高品質なプロセスデータを必要とする。
我々は,Large Language Models (LLM) が生成する推論ステップが,厳密なインクリメンタルな情報表示に失敗することが多く,冗長性が生じることを観察する。
本稿では,冗長なステップを検出するための簡易かつ効果的な粗大な戦略CFPRMを提案する。
論文 参考訳(メタデータ) (2025-01-23T12:44:45Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
ReARTeR(Retrieval-Augmented Reasoning)を提案する。
ReARTeRは、ポストトレーニングとテストタイムスケーリングを通じて、RAGシステムの推論能力を向上する。
マルチステップ推論ベンチマークの実験結果から,大幅な改善が示された。
論文 参考訳(メタデータ) (2025-01-14T05:56:26Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRM) は、推論プロセスにおける中間エラーを特定し、緩和することを目的としている。
我々は,モンテカルロ (MC) 推定とLarge Language Models (LLM) を効果的に統合するコンセンサスフィルタリング機構を開発した。
私たちは、既存のオープンソース代替品よりも優れた、最先端のPRMを新たにリリースしています。
論文 参考訳(メタデータ) (2025-01-13T13:10:16Z) - Free Process Rewards without Process Labels [55.14044050782222]
より安価な応答レベルラベルでORMをトレーニングすることで,テキストシンプルなPRMを追加のコストで得ることができることを示す。
我々の暗黙のPRMは、クロスエントロピー(CE)損失でインスタンス化されると、よりデータ効率が良く、命令1回に1回しか応答しない訓練でも生成モデルを改善することができることを示す。
論文 参考訳(メタデータ) (2024-12-02T21:20:02Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。