Mitigating Subgroup Disparities in Multi-Label Speech Emotion Recognition: A Pseudo-Labeling and Unsupervised Learning Approach
- URL: http://arxiv.org/abs/2505.14449v3
- Date: Fri, 30 May 2025 17:10:08 GMT
- Title: Mitigating Subgroup Disparities in Multi-Label Speech Emotion Recognition: A Pseudo-Labeling and Unsupervised Learning Approach
- Authors: Yi-Cheng Lin, Huang-Cheng Chou, Hung-yi Lee,
- Abstract summary: Implicit Demography Inference (IDI) module uses k-means clustering to mitigate bias in Speech Emotion Recognition (SER)<n>Experiments show that pseudo-labeling IDI reduces subgroup disparities, improving fairness metrics by over 28%.<n>Unsupervised IDI yields more than a 4.6% improvement in fairness metrics with a drop of less than 3.6% in SER performance.
- Score: 53.824673312331626
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While subgroup disparities and performance bias are increasingly studied in computational research, fairness in categorical Speech Emotion Recognition (SER) remains underexplored. Existing methods often rely on explicit demographic labels, which are difficult to obtain due to privacy concerns. To address this limitation, we introduce an Implicit Demography Inference (IDI) module that leverages pseudo-labeling from a pre-trained model and unsupervised learning using k-means clustering to mitigate bias in SER. Our experiments show that pseudo-labeling IDI reduces subgroup disparities, improving fairness metrics by over 28% with less than a 2% decrease in SER accuracy. Also, the unsupervised IDI yields more than a 4.6% improvement in fairness metrics with a drop of less than 3.6% in SER performance. Further analyses reveal that the unsupervised IDI consistently mitigates race and age disparities, demonstrating its potential when explicit demographic information is unavailable.
Related papers
- LabellessFace: Fair Metric Learning for Face Recognition without Attribute Labels [0.11999555634662631]
This paper introduces LabellessFace'', a framework that improves demographic bias in face recognition without requiring demographic group labeling.
We propose a novel fairness enhancement metric called the class favoritism level, which assesses the extent of favoritism towards specific classes.
This method dynamically adjusts learning parameters based on class favoritism levels, promoting fairness across all attributes.
arXiv Detail & Related papers (2024-09-14T02:56:07Z) - Understanding Contrastive Representation Learning from Positive Unlabeled (PU) Data [28.74519165747641]
We study the problem of Positive Unlabeled (PU) learning, where only a small set of labeled positives and a large unlabeled pool are available.<n>We introduce Positive Unlabeled Contrastive Learning (puCL), an unbiased and variance reducing contrastive objective.<n>When the class prior is known, we propose Positive Unlabeled InfoNCE (puNCE), a prior-aware extension that re-weights unlabeled samples as soft positive negative mixtures.
arXiv Detail & Related papers (2024-02-08T20:20:54Z) - Exploring Vacant Classes in Label-Skewed Federated Learning [113.65301899666645]
This paper introduces FedVLS, a novel approach to label-skewed federated learning.<n>It integrates vacant-class distillation and logit suppression simultaneously.<n>Experiments validate the efficacy of FedVLS, demonstrating superior performance compared to previous state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-01-04T16:06:31Z) - Adversarial Reweighting Guided by Wasserstein Distance for Bias
Mitigation [24.160692009892088]
Under-representation of minorities in the data makes the disparate treatment of subpopulations difficult to deal with during learning.
We propose a novel adversarial reweighting method to address such emphrepresentation bias.
arXiv Detail & Related papers (2023-11-21T15:46:11Z) - Scaling Up Semi-supervised Learning with Unconstrained Unlabelled Data [27.75143621836449]
We propose UnMixMatch, a semi-supervised learning framework which can learn effective representations from unconstrained data.
We perform extensive experiments on 4 commonly used datasets and demonstrate superior performance over existing semi-supervised methods with a performance boost of 4.79%.
arXiv Detail & Related papers (2023-06-02T01:07:14Z) - Algorithmic Censoring in Dynamic Learning Systems [6.2952076725399975]
We formalize censoring, demonstrate how it can arise, and highlight difficulties in detection.
We consider safeguards against censoring - recourse and randomized-exploration.
The resulting techniques allow examples from censored groups to enter into the training data and correct the model.
arXiv Detail & Related papers (2023-05-15T21:42:22Z) - Fairness Improves Learning from Noisily Labeled Long-Tailed Data [119.0612617460727]
Long-tailed and noisily labeled data frequently appear in real-world applications and impose significant challenges for learning.
We introduce the Fairness Regularizer (FR), inspired by regularizing the performance gap between any two sub-populations.
We show that the introduced fairness regularizer improves the performances of sub-populations on the tail and the overall learning performance.
arXiv Detail & Related papers (2023-03-22T03:46:51Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
We propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC.
Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch.
Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties.
arXiv Detail & Related papers (2022-12-14T10:28:08Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - Information-Theoretic Bias Assessment Of Learned Representations Of
Pretrained Face Recognition [18.07966649678408]
We propose an information-theoretic, independent bias assessment metric to identify degree of bias against protected demographic attributes.
Our metric differs from other methods that rely on classification accuracy or examine the differences between ground truth and predicted labels of protected attributes predicted using a shallow network.
arXiv Detail & Related papers (2021-11-08T17:41:17Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
We evaluate long-tail learning methods for tweet sentiment and occupation classification.
We extend a margin-loss based approach with methods to enforce fairness.
arXiv Detail & Related papers (2021-09-21T22:16:30Z) - Weakly Supervised Person Search with Region Siamese Networks [65.76237418040071]
Supervised learning is dominant in person search, but it requires elaborate labeling of bounding boxes and identities.
We present a weakly supervised setting where only bounding box annotations are available.
Our model achieves the rank-1 of 87.1% and mAP of 86.0% on CUHK-SYSU benchmark.
arXiv Detail & Related papers (2021-09-13T16:33:27Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.