MicroCrypt Assumptions with Quantum Input Sampling and Pseudodeterminism: Constructions and Separations
- URL: http://arxiv.org/abs/2505.14461v1
- Date: Tue, 20 May 2025 14:57:04 GMT
- Title: MicroCrypt Assumptions with Quantum Input Sampling and Pseudodeterminism: Constructions and Separations
- Authors: Mohammed Barhoush, Ryo Nishimaki, Takashi Yamakawa,
- Abstract summary: We investigate two natural relaxations of quantum cryptographic primitives.<n>The first involves quantum input sampling, where inputs are generated by a quantum algorithm rather than sampled uniformly at random.<n>The second relaxation, $bot$-pseudodeterminism, relaxes the determinism requirement by allowing the output to be a special symbol $bot$ on an inverse-polynomial fraction of inputs.
- Score: 9.738636411374223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate two natural relaxations of quantum cryptographic primitives. The first involves quantum input sampling, where inputs are generated by a quantum algorithm rather than sampled uniformly at random. Applying this to pseudorandom generators ($\textsf{PRG}$s) and pseudorandom states ($\textsf{PRS}$s), leads to the notions denoted as $\textsf{PRG}^{qs}$ and $\textsf{PRS}^{qs}$, respectively. The second relaxation, $\bot$-pseudodeterminism, relaxes the determinism requirement by allowing the output to be a special symbol $\bot$ on an inverse-polynomial fraction of inputs. We demonstrate an equivalence between bounded-query logarithmic-size $\textsf{PRS}^{qs}$, logarithmic-size $\textsf{PRS}^{qs}$, and $\textsf{PRG}^{qs}$. Moreover, we establish that $\textsf{PRG}^{qs}$ can be constructed from $\bot$-$\textsf{PRG}$s, which in turn were built from logarithmic-size $\textsf{PRS}$. Interestingly, these relations remain unknown in the uniform key setting. To further justify these relaxed models, we present black-box separations. Our results suggest that $\bot$-pseudodeterministic primitives may be weaker than their deterministic counterparts, and that primitives based on quantum input sampling may be inherently weaker than those using uniform sampling. Together, these results provide numerous new insights into the structure and hierarchy of primitives within MicroCrypt.
Related papers
- Efficient unitary designs and pseudorandom unitaries from permutations [35.66857288673615]
We show that products exponentiated sums of $S(N)$ permutations with random phases match the first $2Omega(n)$ moments of the Haar measure.
The heart of our proof is a conceptual connection between the large dimension (large-$N$) expansion in random matrix theory and the method.
arXiv Detail & Related papers (2024-04-25T17:08:34Z) - Lower bounds on entanglement entropy without twin copy [0.0]
We calculate the Shannon entropy $S_ABX$ associated with the bitstrings of adiabatically prepared ground states.<n>We show that for a broad range of lattice spacing and detuning, $IX_AB$ is typically 20 percent below $S_AvN$ in regions where $S_AvN$ is large.
arXiv Detail & Related papers (2024-04-15T17:02:17Z) - Pseudorandom and Pseudoentangled States from Subset States [49.74460522523316]
A subset state with respect to $S$, a subset of the computational basis, is [ frac1sqrt|S|sum_iin S |irangle.
We show that for any fixed subset size $|S|=s$ such that $s = 2n/omega(mathrmpoly(n))$ and $s=omega(mathrmpoly(n))$, a random subset state is information-theoretically indistinguishable from a Haar random state even provided
arXiv Detail & Related papers (2023-12-23T15:52:46Z) - Weak Schur sampling with logarithmic quantum memory [0.0]
We introduce a new algorithm for the task of weak Schur sampling.
Our algorithm efficiently determines both the Young label which indexes the irreducible representations and the multiplicity label of the symmetric group.
arXiv Detail & Related papers (2023-09-21T10:02:46Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - How to simulate quantum measurement without computing marginals [3.222802562733787]
We describe and analyze algorithms for classically computation measurement of an $n$-qubit quantum state $psi$ in the standard basis.
Our algorithms reduce the sampling task to computing poly(n)$ amplitudes of $n$-qubit states.
arXiv Detail & Related papers (2021-12-15T21:44:05Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Improved Weak Simulation of Universal Quantum Circuits by Correlated
$L_1$ Sampling [0.0]
Weak simulation is often called weak simulation and is a way to determine when they confer a quantum advantage.
We constructively tighten the upper bound on the worst-case $L_$ norm sampling cost to next order in $t$ from $mathcal O(xit delta-2)$.
This is the first weak simulation algorithm that has lowered this bound's dependence on finite $t$ in the worst-case to our knowledge.
arXiv Detail & Related papers (2021-04-15T05:50:11Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
We are given i.i.d. samples from a distribution of the form $Z = (1-epsilon) X + epsilon B$, where $X$ is a zero-mean and unknown covariance Gaussian $mathcalN(0, Sigma)$.
In the absence of contamination, prior work gave a simple tester for this hypothesis testing task that uses $O(d)$ samples.
We prove a sample complexity lower bound of $Omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma
arXiv Detail & Related papers (2020-12-31T18:24:41Z) - Quantum learning algorithms imply circuit lower bounds [7.970954821067043]
We establish the first general connection between the design of quantum algorithms and circuit lower bounds.
Our proof builds on several works in learning theory, pseudorandomness, and computational complexity.
arXiv Detail & Related papers (2020-12-03T14:03:20Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms.
We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling"
We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $Ngg n$ regime.
arXiv Detail & Related papers (2020-06-02T16:38:36Z) - Spoofing Linear Cross-Entropy Benchmarking in Shallow Quantum Circuits [8.401078947103475]
Google's noisy quantum simulation of a 53 qubit circuit $C$ achieved a fidelity value of $(2.24pm0.21)times10-3$.
Our results can be considered as an evidence that fooling the linear XEB test might be easier than achieving a full simulation of quantum circuit.
arXiv Detail & Related papers (2020-05-05T18:01:48Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.