Distributed quantum computing with black-box subroutines
- URL: http://arxiv.org/abs/2505.14519v1
- Date: Tue, 20 May 2025 15:44:54 GMT
- Title: Distributed quantum computing with black-box subroutines
- Authors: X. Xu, Y. -D. Liu, S. Shi, Y. -J. Wang, D. -S. Wang,
- Abstract summary: We propose a general protocol for distributed quantum computing that accommodates arbitrary unknown subroutines.<n>It can be applied to scale up quantum computing through multi-chip interconnection.<n>We demonstrate that this protocol can be physically implemented using currently available quantum computing platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we propose a general protocol for distributed quantum computing that accommodates arbitrary unknown subroutines. It can be applied to scale up quantum computing through multi-chip interconnection, as well as to tasks such as estimating unknown parameters or processes for circuit depth reduction and constructing secure quantum cryptographic protocols. Our protocol builds upon a few techniques we develop, such as the oblivious quantum teleportation and control, which can circumvent quantum no-go theorems on the manipulation of unknown objects. Furthermore, we demonstrate that this protocol can be physically implemented using currently available quantum computing platforms. These results suggest that our framework could provide a foundation for developing more advanced quantum algorithms and protocols in the future.
Related papers
- Towards a General Framework for Practical Quantum Network Protocols [0.9065034043031668]
The main contribution of this thesis is a mathematical framework for entanglement distribution protocols in a quantum network.<n>We present ground- and satellite-based quantum network architectures that incorporate practical aspects of entanglement distribution.
arXiv Detail & Related papers (2024-12-29T14:20:59Z) - Distributed Quantum Computation via Entanglement Forging and Teleportation [13.135604356093193]
Distributed quantum computation is a practical method for large-scale quantum computation on quantum processors with limited size.
In this paper, we demonstrate the methods to implement a nonlocal quantum circuit on two quantum processors without any quantum correlations.
arXiv Detail & Related papers (2024-09-04T08:10:40Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Benchmarking of Quantum Protocols [0.9176056742068812]
We consider several quantum protocols that enable promising functionalities and services in near-future quantum networks.
We use NetSquid simulation platform to evaluate the effect of various sources of noise on the performance of these protocols.
arXiv Detail & Related papers (2021-11-03T21:17:04Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum teleportation is a reversal of quantum measurement [0.0]
We introduce a generalized concept of quantum teleportation in the framework of quantum measurement and reversing operation.
Our framework makes it possible to find an optimal protocol for quantum teleportation enabling a faithful transfer of unknown quantum states.
arXiv Detail & Related papers (2021-04-25T15:03:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.