A simple estimator of the correlation kernel matrix of a determinantal point process
- URL: http://arxiv.org/abs/2505.14529v1
- Date: Tue, 20 May 2025 15:48:45 GMT
- Title: A simple estimator of the correlation kernel matrix of a determinantal point process
- Authors: Christian Gouriéroux, Yang Lu,
- Abstract summary: This paper proposes a closed form estimator of the Determinantal Point Process (DPP)<n>We prove the consistency and normality of our estimator, as well as its large deviation properties.
- Score: 3.692410936160711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Determinantal Point Process (DPP) is a parameterized model for multivariate binary variables, characterized by a correlation kernel matrix. This paper proposes a closed form estimator of this kernel, which is particularly easy to implement and can also be used as a starting value of learning algorithms for maximum likelihood estimation. We prove the consistency and asymptotic normality of our estimator, as well as its large deviation properties.
Related papers
- A Bound on the Maximal Marginal Degrees of Freedom [0.0]
This paper addresses low rank approximations and surrogates for kernel ridge regression.<n>We demonstrate that the computational cost of the most popular low rank approach, which is the Nystr"om method, is almost linear in the sample size.<n>The result builds on a thorough theoretical analysis of the approximation of elementary kernel functions by elements in the range of the associated integral operator.
arXiv Detail & Related papers (2024-02-20T10:25:44Z) - Spectral Estimators for Structured Generalized Linear Models via Approximate Message Passing [28.91482208876914]
We consider the problem of parameter estimation in a high-dimensional generalized linear model.
Despite their wide use, a rigorous performance characterization, as well as a principled way to preprocess the data, are available only for unstructured designs.
arXiv Detail & Related papers (2023-08-28T11:49:23Z) - Orthogonal Polynomials Approximation Algorithm (OPAA):a functional
analytic approach to estimating probability densities [0.0]
We present the new Orthogonal Polynomials Approximation Algorithm (OPAA)
OPAA estimates probability distributions using functional analytic approach.
It can be applied to estimating the normalizing weight of the posterior.
arXiv Detail & Related papers (2022-11-16T00:51:00Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Probabilistic Simplex Component Analysis [66.30587591100566]
PRISM is a probabilistic simplex component analysis approach to identifying the vertices of a data-circumscribing simplex from data.
The problem has a rich variety of applications, the most notable being hyperspectral unmixing in remote sensing and non-negative matrix factorization in machine learning.
arXiv Detail & Related papers (2021-03-18T05:39:00Z) - Simple and Near-Optimal MAP Inference for Nonsymmetric DPPs [3.3504365823045044]
We study the problem of maximum a posteriori (MAP) inference for determinantal point processes defined by a nonsymmetric kernel matrix.
We obtain the first multiplicative approximation guarantee for this problem using local search.
Our approximation factor of $kO(k)$ is nearly tight, and we show theoretically and experimentally that it compares favorably to the state-of-the-art methods for this problem.
arXiv Detail & Related papers (2021-02-10T09:34:44Z) - Rigid and Articulated Point Registration with Expectation Conditional
Maximization [20.096170794358315]
We introduce an innovative EM-like algorithm, namely the Conditional Expectation Maximization for Point Registration (ECMPR) algorithm.
We analyse in detail the associated consequences in terms of estimation of the registration parameters.
We extend rigid registration to articulated registration.
arXiv Detail & Related papers (2020-12-09T17:36:11Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.