Smart Traffic Signals: Comparing MARL and Fixed-Time Strategies
- URL: http://arxiv.org/abs/2505.14544v2
- Date: Tue, 24 Jun 2025 11:01:50 GMT
- Title: Smart Traffic Signals: Comparing MARL and Fixed-Time Strategies
- Authors: Saahil Mahato,
- Abstract summary: Urban traffic congestion, particularly at intersections, significantly impacts travel time, fuel consumption, and emissions.<n>Traditional fixed-time signal control systems often lack the adaptability to manage dynamic traffic patterns effectively.<n>This study explores the application of multi-agent reinforcement learning to optimize traffic signal coordination across multiple intersections.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban traffic congestion, particularly at intersections, significantly impacts travel time, fuel consumption, and emissions. Traditional fixed-time signal control systems often lack the adaptability to manage dynamic traffic patterns effectively. This study explores the application of multi-agent reinforcement learning (MARL) to optimize traffic signal coordination across multiple intersections within a simulated environment. Utilizing Pygame, a simulation was developed to model a network of interconnected intersections with randomly generated vehicle flows to reflect realistic traffic variability. A decentralized MARL controller was implemented, in which each traffic signal operates as an autonomous agent, making decisions based on local observations and information from neighboring agents. Performance was evaluated against a baseline fixed-time controller using metrics such as average vehicle wait time and overall throughput. The MARL approach demonstrated statistically significant improvements, including reduced average waiting times and improved throughput. These findings suggest that MARL-based dynamic control strategies hold substantial promise for improving urban traffic management efficiency. More research is recommended to address scalability and real-world implementation challenges.
Related papers
- CoT-VLM4Tar: Chain-of-Thought Guided Vision-Language Models for Traffic Anomaly Resolution [14.703196966156288]
CoT-VLM4Tar: (Chain of Thought Visual-Language Model for Traffic Anomaly Resolution)<n>This paper introduces a new chain-of-thought to guide the VLM in analyzing, reasoning, and generating solutions for traffic anomalies with greater reasonable and effective solution.<n>Our results demonstrate the effectiveness of VLM in the resolution of real-time traffic anomalies, providing a proof-of-concept for its integration into autonomous traffic management systems.
arXiv Detail & Related papers (2025-03-03T15:07:25Z) - Traffic Co-Simulation Framework Empowered by Infrastructure Camera Sensing and Reinforcement Learning [4.336971448707467]
Multi-agent reinforcement learning (MARL) is particularly effective for learning control strategies for traffic lights in a network using iterative simulations.<n>This study proposes a co-simulation framework integrating CARLA and SUMO, which combines high-fidelity 3D modeling with large-scale traffic flow simulation.<n>Experiments in the test-bed demonstrate the effectiveness of the proposed MARL approach in enhancing traffic conditions using real-time camera-based detection.
arXiv Detail & Related papers (2024-12-05T07:01:56Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent
Coordination Method [9.761657423863706]
Efficient traffic signal control (TSC) has been one of the most useful ways for reducing urban road congestion.
Recent efforts that applied reinforcement learning (RL) methods can query policies by mapping the traffic state to the signal decision in real-time.
We propose an explicit multiagent coordination (EMC)-based online planning methods that can satisfy adaptive, real-time and network-level TSC.
arXiv Detail & Related papers (2023-06-15T04:08:09Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLight is a new multi-agent reinforcement learning method for traffic signal control.
It learns cooperative traffic control policies by estimating the individual marginal contribution of agents on their local neighborhood.
We benchmark our trained network against state-of-the-art traffic signal control methods on standard benchmarks in two traffic simulators.
arXiv Detail & Related papers (2023-04-20T12:41:25Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.