Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent
Coordination Method
- URL: http://arxiv.org/abs/2306.08843v1
- Date: Thu, 15 Jun 2023 04:08:09 GMT
- Title: Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent
Coordination Method
- Authors: Wanyuan Wang, Tianchi Qiao, Jinming Ma, Jiahui Jin, Zhibin Li, Weiwei
Wu, and Yichuan Jian
- Abstract summary: Efficient traffic signal control (TSC) has been one of the most useful ways for reducing urban road congestion.
Recent efforts that applied reinforcement learning (RL) methods can query policies by mapping the traffic state to the signal decision in real-time.
We propose an explicit multiagent coordination (EMC)-based online planning methods that can satisfy adaptive, real-time and network-level TSC.
- Score: 9.761657423863706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient traffic signal control (TSC) has been one of the most useful ways
for reducing urban road congestion. Key to the challenge of TSC includes 1) the
essential of real-time signal decision, 2) the complexity in traffic dynamics,
and 3) the network-level coordination. Recent efforts that applied
reinforcement learning (RL) methods can query policies by mapping the traffic
state to the signal decision in real-time, however, is inadequate for
unexpected traffic flows. By observing real traffic information, online
planning methods can compute the signal decisions in a responsive manner. We
propose an explicit multiagent coordination (EMC)-based online planning methods
that can satisfy adaptive, real-time and network-level TSC. By multiagent, we
model each intersection as an autonomous agent, and the coordination efficiency
is modeled by a cost (i.e., congestion index) function between neighbor
intersections. By network-level coordination, each agent exchanges messages
with respect to cost function with its neighbors in a fully decentralized
manner. By real-time, the message passing procedure can interrupt at any time
when the real time limit is reached and agents select the optimal signal
decisions according to the current message. Moreover, we prove our EMC method
can guarantee network stability by borrowing ideas from transportation domain.
Finally, we test our EMC method in both synthetic and real road network
datasets. Experimental results are encouraging: compared to RL and conventional
transportation baselines, our EMC method performs reasonably well in terms of
adapting to real-time traffic dynamics, minimizing vehicle travel time and
scalability to city-scale road networks.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
arXiv Detail & Related papers (2024-04-17T02:46:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning [19.024527400852968]
We propose a joint optimization approach for traffic signal control and vehicle routing in signalized road networks.
The objective is to enhance network performance by simultaneously controlling signal timings and route choices using Multi-Agent Deep Reinforcement Learning (MADRL)
Our work is the first to utilize MADRL in determining the optimal joint policy for signal control and vehicle routing.
arXiv Detail & Related papers (2023-10-16T22:10:47Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
Cooperative coordination at unsignalized road intersections aims to improve the safety driving traffic throughput for connected and automated vehicles.
We introduce a model-free Markov Decision Process (MDP) and tackle it by a Twin Delayed Deep Deterministic Policy (TD3)-based strategy in the deep reinforcement learning framework.
We show that the proposed strategy could achieve near-optimal performance in sub-static coordination scenarios and significantly improve control in the realistic continuous flow.
arXiv Detail & Related papers (2022-05-03T02:56:02Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
arXiv Detail & Related papers (2022-02-20T10:25:15Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.