Instance Segmentation for Point Sets
- URL: http://arxiv.org/abs/2505.14583v1
- Date: Tue, 20 May 2025 16:40:01 GMT
- Title: Instance Segmentation for Point Sets
- Authors: Abhimanyu Talwar, Julien Laasri,
- Abstract summary: neural network architectures like PointNet [QSMG16] and PointNet++ [QYSG17] have made it possible to apply Deep Learning to 3D point sets.<n>In this report, we attempt to tackle this issue through use of two sampling based methods.<n>While both approaches perform equally well on large sub-samples, the random-based strategy gives the most improvements in terms of speed and memory usage.
- Score: 0.276240219662896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently proposed neural network architectures like PointNet [QSMG16] and PointNet++ [QYSG17] have made it possible to apply Deep Learning to 3D point sets. The feature representations of shapes learned by these two networks enabled training classifiers for Semantic Segmentation, and more recently for Instance Segmentation via the Similarity Group Proposal Network (SGPN) [WYHN17]. One area of improvement which has been highlighted by SGPN's authors, pertains to use of memory intensive similarity matrices which occupy memory quadratic in the number of points. In this report, we attempt to tackle this issue through use of two sampling based methods, which compute Instance Segmentation on a sub-sampled Point Set, and then extrapolate labels to the complete set using the nearest neigbhour approach. While both approaches perform equally well on large sub-samples, the random-based strategy gives the most improvements in terms of speed and memory usage.
Related papers
- ISBNet: a 3D Point Cloud Instance Segmentation Network with
Instance-aware Sampling and Box-aware Dynamic Convolution [14.88505076974645]
ISBNet is a novel method that represents instances as kernels and decodes instance masks via dynamic convolution.
We set new state-of-the-art results on ScanNetV2 (55.9), S3DIS (60.8), S3LS3D (49.2) in terms of AP and retains fast inference time (237ms per scene on ScanNetV2.
arXiv Detail & Related papers (2023-03-01T06:06:28Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - CPSeg: Cluster-free Panoptic Segmentation of 3D LiDAR Point Clouds [2.891413712995641]
We propose a novel real-time end-to-end panoptic segmentation network for LiDAR point clouds, called CPSeg.
CPSeg comprises a shared encoder, a dual decoder, a task-aware attention module (TAM) and a cluster-free instance segmentation head.
arXiv Detail & Related papers (2021-11-02T16:44:06Z) - GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds [64.86292006892093]
GSIP (Green of Indoor Point clouds) is an efficient solution to semantic segmentation of large-scale indoor scene point clouds.
GSIP has two novel components: 1) a room-style data pre-processing method that selects a proper subset of points for further processing, and 2) a new feature extractor which is extended from PointHop.
Experiments show that GSIP outperforms PointNet in segmentation performance for the S3DIS dataset.
arXiv Detail & Related papers (2021-09-24T09:26:53Z) - Self-Prediction for Joint Instance and Semantic Segmentation of Point
Clouds [41.75579185647845]
We develop a novel learning scheme named Self-Prediction for 3D instance and semantic segmentation of point clouds.
Our method achieves state-of-the-art instance segmentation results on S3DIS and comparable semantic segmentation results on S3DIS and ShapeNet.
arXiv Detail & Related papers (2020-07-27T07:58:00Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
We propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method.
Our proposed method shows significant and consistent improvements compared to baselines in different few-shot point cloud semantic segmentation settings.
arXiv Detail & Related papers (2020-06-22T08:05:25Z) - PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation [111.7241018610573]
We present PointGroup, a new end-to-end bottom-up architecture for instance segmentation.
We design a two-branch network to extract point features and predict semantic labels and offsets, for shifting each point towards its respective instance centroid.
A clustering component is followed to utilize both the original and offset-shifted point coordinate sets, taking advantage of their complementary strength.
We conduct extensive experiments on two challenging datasets, ScanNet v2 and S3DIS, on which our method achieves the highest performance, 63.6% and 64.0%, compared to 54.9% and 54.4% achieved by former best
arXiv Detail & Related papers (2020-04-03T16:26:37Z) - Deep Affinity Net: Instance Segmentation via Affinity [48.498706304017674]
Deep Affinity Net is an effective affinity-based approach accompanied with a new graph partitioning algorithm Cascade-GAEC.
It achieves the best single-shot result as well as the fastest running time among all affinity-based models.
It also outperforms the region-based method Mask R-CNN.
arXiv Detail & Related papers (2020-03-15T15:22:56Z) - PointINS: Point-based Instance Segmentation [117.38579097923052]
Mask representation in instance segmentation with Point-of-Interest (PoI) features is challenging because learning a high-dimensional mask feature for each instance requires a heavy computing burden.
We propose an instance-aware convolution, which decomposes this mask representation learning task into two tractable modules.
Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach.
arXiv Detail & Related papers (2020-03-13T08:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.