Think Only When You Need with Large Hybrid-Reasoning Models
- URL: http://arxiv.org/abs/2505.14631v2
- Date: Wed, 21 May 2025 05:17:34 GMT
- Title: Think Only When You Need with Large Hybrid-Reasoning Models
- Authors: Lingjie Jiang, Xun Wu, Shaohan Huang, Qingxiu Dong, Zewen Chi, Li Dong, Xingxing Zhang, Tengchao Lv, Lei Cui, Furu Wei,
- Abstract summary: Large Hybrid-Reasoning Models (LHRMs)<n>First kind of model capable of adaptively determining whether to perform thinking based on contextual information of user queries.<n>Extensive experimental results show that LHRMs can adaptively perform hybrid thinking on queries of varying difficulty and type.
- Score: 121.55211364358662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Large Reasoning Models (LRMs) have shown substantially improved reasoning capabilities over traditional Large Language Models (LLMs) by incorporating extended thinking processes prior to producing final responses. However, excessively lengthy thinking introduces substantial overhead in terms of token consumption and latency, which is particularly unnecessary for simple queries. In this work, we introduce Large Hybrid-Reasoning Models (LHRMs), the first kind of model capable of adaptively determining whether to perform thinking based on the contextual information of user queries. To achieve this, we propose a two-stage training pipeline comprising Hybrid Fine-Tuning (HFT) as a cold start, followed by online reinforcement learning with the proposed Hybrid Group Policy Optimization (HGPO) to implicitly learn to select the appropriate thinking mode. Furthermore, we introduce a metric called Hybrid Accuracy to quantitatively assess the model's capability for hybrid thinking. Extensive experimental results show that LHRMs can adaptively perform hybrid thinking on queries of varying difficulty and type. It outperforms existing LRMs and LLMs in reasoning and general capabilities while significantly improving efficiency. Together, our work advocates for a reconsideration of the appropriate use of extended thinking processes and provides a solid starting point for building hybrid thinking systems.
Related papers
- Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models [49.598776427454176]
Large Reasoning Models (LRMs) have gradually become a research hotspot due to their outstanding performance in handling complex tasks.<n>However, with the widespread application of these models, the problem of overthinking has gradually emerged.<n>Various efficient reasoning methods have been proposed, aiming to reduce the length of reasoning paths without compromising model performance and reasoning capability.
arXiv Detail & Related papers (2025-08-04T06:54:31Z) - KAT-V1: Kwai-AutoThink Technical Report [50.84483585850113]
We present Kwaipilot-AutoThink (KAT), an open-source 40B large language model developed to address the overthinking problem in reasoning-intensive tasks.<n>KAT dynamically switches between reasoning and non-reasoning modes based on task complexity.<n>We also propose Step-SRPO, a reinforcement learning algorithm that incorporates intermediate supervision into the GRPO framework.
arXiv Detail & Related papers (2025-07-11T04:07:10Z) - Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning [10.255235456427037]
We propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in Large Language Models (LLMs)<n>The first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization.<n>The second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization.
arXiv Detail & Related papers (2025-05-27T13:29:51Z) - $\ ext{R}^2\ ext{ec}$: Towards Large Recommender Models with Reasoning [50.291998724376654]
We propose name, a unified large recommender model with intrinsic reasoning capabilities.<n> RecPO is a corresponding reinforcement learning framework that optimize name both the reasoning and recommendation capabilities simultaneously in a single policy update.<n> Experiments on three datasets with various baselines verify the effectiveness of name, showing relative improvements of 68.67% in Hit@5 and 45.21% in NDCG@20.
arXiv Detail & Related papers (2025-05-22T17:55:43Z) - Incentivizing Dual Process Thinking for Efficient Large Language Model Reasoning [75.04643265875072]
Large reasoning models (LRMs) have demonstrated strong performance on complex reasoning tasks, but often suffer from overthinking.<n>Inspired by the dual process theory in cognitive science, we propose Adaptive Cognition Policy Optimization.<n>ACPO enables LRMs to achieve efficient reasoning through adaptive cognitive allocation and dynamic system switch.
arXiv Detail & Related papers (2025-05-22T07:15:08Z) - Think-RM: Enabling Long-Horizon Reasoning in Generative Reward Models [50.4652276723694]
Think-RM generates flexible, self-guided reasoning traces that support advanced capabilities.<n>Think-RM achieves state-of-the-art results on RM-Bench, outperforming both BT RM and vertically scaled GenRM by 8%.
arXiv Detail & Related papers (2025-05-22T05:56:11Z) - Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning [45.16917994431658]
This paper proposes UnifiedReward-Think, the first unified multimodal CoT-based reward model.<n>We first use a small amount of image generation preference data to distill the reasoning process of GPT-4o.<n>We then prepare large-scale unified multimodal preference data to elicit the model's reasoning process across various vision tasks.
arXiv Detail & Related papers (2025-05-06T08:46:41Z) - Leveraging Reasoning Model Answers to Enhance Non-Reasoning Model Capability [16.441081996257576]
We propose leveraging reasoning-intensive models to improve less computationally demanding, non-reasoning models.<n>We demonstrate consistent improvements across various benchmarks, underscoring the potential of this approach for advancing the ability of models to answer questions directly.
arXiv Detail & Related papers (2025-04-13T16:26:56Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.<n>We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
We introduce a novel multimodal RAG framework named RMR (Retrieval Meets Reasoning)
The RMR framework employs a bi-modal retrieval module to identify the most relevant question-answer pairs.
It significantly boosts the performance of various vision-language models across a spectrum of benchmark datasets.
arXiv Detail & Related papers (2024-05-31T14:23:49Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training [49.3242278912771]
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions.
Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework.
We propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process.
arXiv Detail & Related papers (2023-11-23T17:09:48Z) - Applying Autonomous Hybrid Agent-based Computing to Difficult
Optimization Problems [56.821213236215634]
This paper focuses on a proposed hybrid version of the EMAS.
It covers selection and introduction of a number of hybrid operators and defining rules for starting the hybrid steps of the main algorithm.
Those hybrid steps leverage existing, well-known and proven to be efficient metaheuristics, and integrate their results into the main algorithm.
arXiv Detail & Related papers (2022-10-24T13:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.