Visionary-R1: Mitigating Shortcuts in Visual Reasoning with Reinforcement Learning
- URL: http://arxiv.org/abs/2505.14677v1
- Date: Tue, 20 May 2025 17:58:35 GMT
- Title: Visionary-R1: Mitigating Shortcuts in Visual Reasoning with Reinforcement Learning
- Authors: Jiaer Xia, Yuhang Zang, Peng Gao, Yixuan Li, Kaiyang Zhou,
- Abstract summary: We train visual language models (VLMs) to perform reasoning on image data through reinforcement learning and visual question-answer pairs.<n>Our model, named Visionary-R1, outperforms strong multimodal models on multiple visual reasoning benchmarks.
- Score: 41.59815187158526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning general-purpose reasoning capabilities has long been a challenging problem in AI. Recent research in large language models (LLMs), such as DeepSeek-R1, has shown that reinforcement learning techniques like GRPO can enable pre-trained LLMs to develop reasoning capabilities using simple question-answer pairs. In this paper, we aim to train visual language models (VLMs) to perform reasoning on image data through reinforcement learning and visual question-answer pairs, without any explicit chain-of-thought (CoT) supervision. Our findings indicate that simply applying reinforcement learning to a VLM -- by prompting the model to produce a reasoning chain before providing an answer -- can lead the model to develop shortcuts from easy questions, thereby reducing its ability to generalize across unseen data distributions. We argue that the key to mitigating shortcut learning is to encourage the model to interpret images prior to reasoning. Therefore, we train the model to adhere to a caption-reason-answer output format: initially generating a detailed caption for an image, followed by constructing an extensive reasoning chain. When trained on 273K CoT-free visual question-answer pairs and using only reinforcement learning, our model, named Visionary-R1, outperforms strong multimodal models, such as GPT-4o, Claude3.5-Sonnet, and Gemini-1.5-Pro, on multiple visual reasoning benchmarks.
Related papers
- MiCo: Multi-image Contrast for Reinforcement Visual Reasoning [72.81576836419373]
Chain-of-Thought (CoT) reasoning can be used to link visual cues across multiple images.<n>We adapt rule-based reinforcement learning for Vision-Language Models (VLMs)<n>Our method achieves significant improvements on multi-image reasoning benchmarks and shows strong performance on general vision tasks.
arXiv Detail & Related papers (2025-06-27T17:59:27Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models [45.33952788910874]
TON is a two-stage training strategy for vision-language models.<n>It introduces a think-or-not format that serves as a cold start for selective reasoning.<n>TON can reduce the completion length by up to 90% compared to vanilla GRPO.
arXiv Detail & Related papers (2025-05-22T16:13:29Z) - Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning [58.86928947970342]
Embodied-R is a framework combining large-scale Vision-Language Models for perception and small-scale Language Models for reasoning.<n>After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models.<n>Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration.
arXiv Detail & Related papers (2025-04-17T06:16:11Z) - VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model [29.524164786422368]
Recently, DeepSeek R1 has shown that reinforcement learning can substantially improve the reasoning capabilities of Large Language Models (LLMs)<n>We investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs)<n>We develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks.
arXiv Detail & Related papers (2025-04-10T10:05:15Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning [53.790502697674754]
We propose Take-along Visual Conditioning (TVC), a strategy that shifts image input to critical reasoning stages.<n>TVC helps the model retain attention to the visual components throughout the reasoning.<n>Our approach achieves state-of-the-art performance on average across five mathematical reasoning benchmarks.
arXiv Detail & Related papers (2025-03-17T16:45:12Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.