Benchmarking Graph Neural Networks for Document Layout Analysis in Public Affairs
- URL: http://arxiv.org/abs/2505.14699v2
- Date: Mon, 28 Jul 2025 09:10:12 GMT
- Title: Benchmarking Graph Neural Networks for Document Layout Analysis in Public Affairs
- Authors: Miguel Lopez-Duran, Julian Fierrez, Aythami Morales, Ruben Tolosana, Oscar Delgado-Mohatar, Alvaro Ortigosa,
- Abstract summary: We benchmark Graph Neural Network (GNN) architectures for the task of fine-grained layout classification of text blocks from digital native documents.<n>Our results demonstrate that GraphSAGE operating on the k-closest-neighbor graph in a dual-branch configuration achieves the highest per-class and overall accuracy.
- Score: 12.745520645025808
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The automatic analysis of document layouts in digital-born PDF documents remains a challenging problem due to the heterogeneous arrangement of textual and nontextual elements and the imprecision of the textual metadata in the Portable Document Format. In this work, we benchmark Graph Neural Network (GNN) architectures for the task of fine-grained layout classification of text blocks from digital native documents. We introduce two graph construction structures: a k-closest-neighbor graph and a fully connected graph, and generate node features via pre-trained text and vision models, thus avoiding manual feature engineering. Three experimental frameworks are evaluated: single-modality (text or visual), concatenated multimodal, and dual-branch multimodal. We evaluated four foundational GNN models and compared them with the baseline. Our experiments are specifically conducted on a rich dataset of public affairs documents that includes more than 20 sources (e.g., regional and national-level official gazettes), 37K PDF documents, with 441K pages in total. Our results demonstrate that GraphSAGE operating on the k-closest-neighbor graph in a dual-branch configuration achieves the highest per-class and overall accuracy, outperforming the baseline in some sources. These findings confirm the importance of local layout relationships and multimodal fusion exploited through GNNs for the analysis of native digital document layouts.
Related papers
- Enhancing Document AI Data Generation Through Graph-Based Synthetic Layouts [0.8245350546263803]
We propose a novel approach to synthetic document layout generation using Graph Neural Networks (GNNs)<n>By representing document elements as nodes in a graph, GNNs are trained to generate realistic and diverse document layouts.<n>Our experimental results show that graph-augmented document layouts outperform existing augmentation techniques.
arXiv Detail & Related papers (2024-11-27T21:15:02Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models [63.466265039007816]
We present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community.
We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.
arXiv Detail & Related papers (2024-06-17T15:13:52Z) - GraphKD: Exploring Knowledge Distillation Towards Document Object
Detection with Structured Graph Creation [14.511401955827875]
Object detection in documents is a key step to automate the structural elements identification process.
We present a graph-based knowledge distillation framework to correctly identify and localize the document objects in a document image.
arXiv Detail & Related papers (2024-02-17T23:08:32Z) - Article Classification with Graph Neural Networks and Multigraphs [0.12499537119440243]
We propose a method to enhance the performance of article classification by enriching simple Graph Neural Network (GNN) pipelines with multi-graph representations.
fully supervised transductive node classification experiments are conducted on the Open Graph Benchmark OGBN-arXiv dataset and the PubMed diabetes dataset.
Results demonstrate that multi-graphs consistently improve the performance of a variety of GNN models compared to the default graphs.
arXiv Detail & Related papers (2023-09-20T14:18:04Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
We propose GraphLM, a novel document understanding model that injects layout knowledge into the model.
We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results.
arXiv Detail & Related papers (2023-08-15T13:53:52Z) - Doc2SoarGraph: Discrete Reasoning over Visually-Rich Table-Text
Documents via Semantic-Oriented Hierarchical Graphs [79.0426838808629]
We propose TAT-DQA, i.e. to answer the question over a visually-rich table-text document.
Specifically, we propose a novel Doc2SoarGraph framework with enhanced discrete reasoning capability.
We conduct extensive experiments on TAT-DQA dataset, and the results show that our proposed framework outperforms the best baseline model by 17.73% and 16.91% in terms of Exact Match (EM) and F1 score respectively on the test set.
arXiv Detail & Related papers (2023-05-03T07:30:32Z) - PARAGRAPH2GRAPH: A GNN-based framework for layout paragraph analysis [6.155943751502232]
We present a language-independent graph neural network (GNN)-based model that achieves competitive results on common document layout datasets.
Our model is suitable for industrial applications, particularly in multi-language scenarios.
arXiv Detail & Related papers (2023-04-24T03:54:48Z) - Doc-GCN: Heterogeneous Graph Convolutional Networks for Document Layout
Analysis [4.920817773181236]
Our Doc-GCN presents an effective way to harmonize and integrate heterogeneous aspects for Document Layout Analysis.
We first construct graphs to explicitly describe four main aspects, including syntactic, semantic, density, and appearance/visual information.
We apply graph convolutional networks for representing each aspect of information and use pooling to integrate them.
arXiv Detail & Related papers (2022-08-22T07:22:05Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Minimally-Supervised Structure-Rich Text Categorization via Learning on
Text-Rich Networks [61.23408995934415]
We propose a novel framework for minimally supervised categorization by learning from the text-rich network.
Specifically, we jointly train two modules with different inductive biases -- a text analysis module for text understanding and a network learning module for class-discriminative, scalable network learning.
Our experiments show that given only three seed documents per category, our framework can achieve an accuracy of about 92%.
arXiv Detail & Related papers (2021-02-23T04:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.