Enhancing Document AI Data Generation Through Graph-Based Synthetic Layouts
- URL: http://arxiv.org/abs/2412.03590v1
- Date: Wed, 27 Nov 2024 21:15:02 GMT
- Title: Enhancing Document AI Data Generation Through Graph-Based Synthetic Layouts
- Authors: Amit Agarwal, Hitesh Patel, Priyaranjan Pattnayak, Srikant Panda, Bhargava Kumar, Tejaswini Kumar,
- Abstract summary: We propose a novel approach to synthetic document layout generation using Graph Neural Networks (GNNs)
By representing document elements as nodes in a graph, GNNs are trained to generate realistic and diverse document layouts.
Our experimental results show that graph-augmented document layouts outperform existing augmentation techniques.
- Score: 0.8245350546263803
- License:
- Abstract: The development of robust Document AI models has been constrained by limited access to high-quality, labeled datasets, primarily due to data privacy concerns, scarcity, and the high cost of manual annotation. Traditional methods of synthetic data generation, such as text and image augmentation, have proven effective for increasing data diversity but often fail to capture the complex layout structures present in real world documents. This paper proposes a novel approach to synthetic document layout generation using Graph Neural Networks (GNNs). By representing document elements (e.g., text blocks, images, tables) as nodes in a graph and their spatial relationships as edges, GNNs are trained to generate realistic and diverse document layouts. This method leverages graph-based learning to ensure structural coherence and semantic consistency, addressing the limitations of traditional augmentation techniques. The proposed framework is evaluated on tasks such as document classification, named entity recognition (NER), and information extraction, demonstrating significant performance improvements. Furthermore, we address the computational challenges of GNN based synthetic data generation and propose solutions to mitigate domain adaptation issues between synthetic and real-world datasets. Our experimental results show that graph-augmented document layouts outperform existing augmentation techniques, offering a scalable and flexible solution for training Document AI models.
Related papers
- HyperQuery: Beyond Binary Link Prediction [0.7100520098029438]
We introduce a novel feature extraction technique using node level clustering and show how integrating data from node-level labels can improve system performance.
Our self-supervised approach achieves significant improvement over state of the art baselines on several hyperedge prediction and knowledge hypergraph completion benchmarks.
arXiv Detail & Related papers (2025-01-13T22:46:24Z) - TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - GraphKD: Exploring Knowledge Distillation Towards Document Object
Detection with Structured Graph Creation [14.511401955827875]
Object detection in documents is a key step to automate the structural elements identification process.
We present a graph-based knowledge distillation framework to correctly identify and localize the document objects in a document image.
arXiv Detail & Related papers (2024-02-17T23:08:32Z) - DECDM: Document Enhancement using Cycle-Consistent Diffusion Models [3.3813766129849845]
We propose DECDM, an end-to-end document-level image translation method inspired by recent advances in diffusion models.
Our method overcomes the limitations of paired training by independently training the source (noisy input) and target (clean output) models.
We also introduce simple data augmentation strategies to improve character-glyph conservation during translation.
arXiv Detail & Related papers (2023-11-16T07:16:02Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
We propose GraphLM, a novel document understanding model that injects layout knowledge into the model.
We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results.
arXiv Detail & Related papers (2023-08-15T13:53:52Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
We propose a novel network architecture equipped with a novel meta-learning algorithm to solve this problem.
In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy.
Our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets.
arXiv Detail & Related papers (2021-12-18T00:11:56Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.