Explainable Prediction of the Mechanical Properties of Composites with CNNs
- URL: http://arxiv.org/abs/2505.14745v1
- Date: Tue, 20 May 2025 08:54:06 GMT
- Title: Explainable Prediction of the Mechanical Properties of Composites with CNNs
- Authors: Varun Raaghav, Dimitrios Bikos, Antonio Rago, Francesca Toni, Maria Charalambides,
- Abstract summary: We show that convolutional neural networks (CNNs) equipped with methods from explainable AI (XAI) can be successfully deployed to solve this problem.<n>Our approach uses customised CNNs trained on a dataset we generate using transverse tension tests to predict composites' mechanical properties.<n>We then use SHAP and Integrated Gradients, two post-hoc XAI methods, to explain the predictions, showing that the CNNs use the critical geometrical features that influence the composites' behaviour.
- Score: 11.662972025976192
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Composites are amongst the most important materials manufactured today, as evidenced by their use in countless applications. In order to establish the suitability of composites in specific applications, finite element (FE) modelling, a numerical method based on partial differential equations, is the industry standard for assessing their mechanical properties. However, FE modelling is exceptionally costly from a computational viewpoint, a limitation which has led to efforts towards applying AI models to this task. However, in these approaches: the chosen model architectures were rudimentary, feed-forward neural networks giving limited accuracy; the studies focus on predicting elastic mechanical properties, without considering material strength limits; and the models lacked transparency, hindering trustworthiness by users. In this paper, we show that convolutional neural networks (CNNs) equipped with methods from explainable AI (XAI) can be successfully deployed to solve this problem. Our approach uses customised CNNs trained on a dataset we generate using transverse tension tests in FE modelling to predict composites' mechanical properties, i.e., Young's modulus and yield strength. We show empirically that our approach achieves high accuracy, outperforming a baseline, ResNet-34, in estimating the mechanical properties. We then use SHAP and Integrated Gradients, two post-hoc XAI methods, to explain the predictions, showing that the CNNs use the critical geometrical features that influence the composites' behaviour, thus allowing engineers to verify that the models are trustworthy by representing the science of composites.
Related papers
- Exploring Efficient Quantification of Modeling Uncertainties with Differentiable Physics-Informed Machine Learning Architectures [2.4117201298131232]
Quantifying and propagating modeling uncertainties is crucial for reliability analysis, robust optimization, and other model-based algorithmic processes in engineering design and control.<n> physics-informed machine learning (PIML) methods have emerged in recent years as a new alternative to traditional computational modeling and surrogate modeling methods.
arXiv Detail & Related papers (2025-06-23T02:32:20Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
Predictive coding is a message-passing framework initially developed to model information processing in the brain.
In this work, we build models that rely on the message-passing rule of predictive coding.
We show that the proposed models are comparable to standard ones in terms of performance in both inductive and transductive tasks.
arXiv Detail & Related papers (2022-12-09T03:58:22Z) - Graph Contrastive Learning for Materials [6.667711415870472]
We introduce CrystalCLR, a framework for constrastive learning of representations with crystal graph neural networks.
With the addition of a novel loss function, our framework is able to learn representations competitive with engineered fingerprinting methods.
We also demonstrate that via model finetuning, contrastive pretraining can improve the performance of graph neural networks for prediction of material properties.
arXiv Detail & Related papers (2022-11-24T04:15:47Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
We propose to use data-driven modeling to predict a material's response without using conventional models.
The material response is modeled by learning the implicit mappings between loading conditions and the resultant displacement and/or damage fields.
We demonstrate the performance of our proposed method for a number of examples, including hyperelastic, anisotropic and brittle materials.
arXiv Detail & Related papers (2022-03-15T19:08:13Z) - Privacy-preserving machine learning with tensor networks [37.01494003138908]
We show that tensor network architectures have especially prospective properties for privacy-preserving machine learning.
First, we describe a new privacy vulnerability that is present in feedforward neural networks, illustrating it in synthetic and real-world datasets.
We rigorously prove that such conditions are satisfied by tensor-network architectures.
arXiv Detail & Related papers (2022-02-24T19:04:35Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.