論文の概要: GraphemeAug: A Systematic Approach to Synthesized Hard Negative Keyword Spotting Examples
- arxiv url: http://arxiv.org/abs/2505.14814v1
- Date: Tue, 20 May 2025 18:24:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 14:49:22.531684
- Title: GraphemeAug: A Systematic Approach to Synthesized Hard Negative Keyword Spotting Examples
- Title(参考訳): GraphemeAug: 合成ハード負のキーワードスポッティング例に対する体系的アプローチ
- Authors: Harry Zhang, Kurt Partridge, Pai Zhu, Neng Chen, Hyun Jin Park, Dhruuv Agarwal, Quan Wang,
- Abstract要約: Spoken Keyword Spotting (KWS) は、音声におけるキーワードの存在と欠如を区別するタスクである。
本稿では,キーワードのグラフに挿入/削除/置換を編集することで,決定境界に近い逆例を生成する手法を提案する。
本手法は, 音声データの品質を保ちながら, 合成硬質負のデータセット上でのAUCを61%向上させることを示す。
- 参考スコア(独自算出の注目度): 9.34501666048989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spoken Keyword Spotting (KWS) is the task of distinguishing between the presence and absence of a keyword in audio. The accuracy of a KWS model hinges on its ability to correctly classify examples close to the keyword and non-keyword boundary. These boundary examples are often scarce in training data, limiting model performance. In this paper, we propose a method to systematically generate adversarial examples close to the decision boundary by making insertion/deletion/substitution edits on the keyword's graphemes. We evaluate this technique on held-out data for a popular keyword and show that the technique improves AUC on a dataset of synthetic hard negatives by 61% while maintaining quality on positives and ambient negative audio data.
- Abstract(参考訳): Spoken Keyword Spotting (KWS) は、音声におけるキーワードの存在と欠如を区別するタスクである。
KWSモデルの精度は、キーワードと非キーワード境界に近い例を正しく分類する能力に基づいている。
これらのバウンダリの例は、しばしばトレーニングデータに乏しく、モデルのパフォーマンスを制限します。
本稿では,キーワードのグラフ上に挿入/削除/置換編集を行うことで,決定境界に近い逆例を体系的に生成する手法を提案する。
我々は,この手法を一般的なキーワードの保留データ上で評価し,この手法により合成ハードネガティブのデータセット上でのAUCを61%改善し,正および周囲陰性音声データの品質を維持した。
関連論文リスト
- CAST: Corpus-Aware Self-similarity Enhanced Topic modelling [16.562349140796115]
CAST: Corpus-Aware Self-similarity Enhanced Topic modelling, a novel topic modelling methodを紹介する。
機能的単語が候補話題語として振る舞うのを防ぐための効果的な指標として自己相似性を見出した。
提案手法は,生成したトピックの一貫性と多様性,およびノイズの多いデータを扱うトピックモデルの能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-19T15:27:11Z) - Open-vocabulary Keyword-spotting with Adaptive Instance Normalization [18.250276540068047]
本稿では,キーワード条件付き正規化パラメータを出力するためにテキストエンコーダを訓練するキーワードスポッティングの新しい手法であるAdaKWSを提案する。
近年のキーワードスポッティングやASRベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-09-13T13:49:42Z) - Automatic Counterfactual Augmentation for Robust Text Classification
Based on Word-Group Search [12.894936637198471]
一般に、ラベルと表面的関連を生じると、キーワードはショートカットと見なされ、結果として誤った予測となる。
キーワードの組み合わせの因果効果を捉え,予測に最も影響を与える組み合わせを注文する,新しいWord-Groupマイニング手法を提案する。
提案手法は,効率的なポストホック解析とビームサーチに基づいて,マイニング効果の確保と複雑さの低減を図っている。
論文 参考訳(メタデータ) (2023-07-01T02:26:34Z) - Towards preserving word order importance through Forced Invalidation [80.33036864442182]
事前学習された言語モデルは単語の順序に敏感であることを示す。
我々は,単語順序の重要性を維持するために強制的無効化を提案する。
実験の結果,強制的無効化は単語順に対するモデルの感度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-04-11T13:42:10Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [58.617025733655005]
緩和ラベルバイアス(M-Tuning)を用いた視覚言語プロンプトチューニング手法を提案する。
これはWordNetからのオープンワードを導入し、クローズドセットラベルワードのみからもっと多くのプロンプトテキストを形成する単語の範囲を広げ、シミュレートされたオープンセットシナリオでプロンプトをチューニングする。
提案手法は,様々なスケールのデータセット上で最高の性能を達成し,広範囲にわたるアブレーション研究もその有効性を検証した。
論文 参考訳(メタデータ) (2023-03-09T09:05:47Z) - Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting [23.627625026135505]
本稿では,ユーザ定義キーワードスポッティング手法を提案する。
提案手法は,入力クエリをテキストキーワードシーケンスと比較する。
本稿ではキーワードスポッティングモデルを効率的にトレーニングするためのLibriPhraseデータセットを紹介する。
論文 参考訳(メタデータ) (2022-06-30T16:40:31Z) - Keywords and Instances: A Hierarchical Contrastive Learning Framework Unifying Hybrid Granularities for Text Generation [60.62039705180484]
入力テキスト中のハイブリッドな粒度意味を統一する階層的コントラスト学習機構を提案する。
実験により,本モデルがパラフレージング,対話生成,ストーリーテリングタスクにおいて,競争ベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2022-05-26T13:26:03Z) - Semantic-Preserving Adversarial Text Attacks [85.32186121859321]
深層モデルの脆弱性を調べるために, Bigram と Unigram を用いた適応的セマンティック保存最適化法 (BU-SPO) を提案する。
提案手法は,既存手法と比較して最小の単語数を変更することで,攻撃成功率とセマンティックス率を最大化する。
論文 参考訳(メタデータ) (2021-08-23T09:05:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。