P-React: Synthesizing Topic-Adaptive Reactions of Personality Traits via Mixture of Specialized LoRA Experts
- URL: http://arxiv.org/abs/2406.12548v3
- Date: Thu, 24 Jul 2025 16:54:18 GMT
- Title: P-React: Synthesizing Topic-Adaptive Reactions of Personality Traits via Mixture of Specialized LoRA Experts
- Authors: Yuhao Dan, Jie Zhou, Qin Chen, Junfeng Tian, Liang He,
- Abstract summary: We propose P-React, a mixture of experts (MoE)-based personalized large language models.<n> Particularly, we integrate a Personality Loss (PSL) to better capture individual trait expressions.<n>To facilitate research in this field, we curate OCEAN-Chat, a high-quality, human-verified dataset.
- Score: 34.374681921626205
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Personalized large language models (LLMs) have attracted great attention in many applications, such as emotional support and role-playing. However, existing works primarily focus on modeling explicit character profiles, while ignoring the underlying personality traits that truly shape behaviors and decision-making, hampering the development of more anthropomorphic and psychologically-grounded AI systems. In this paper, we explore the modeling of Big Five personality traits, which is the most widely used trait theory in psychology, and propose P-React, a mixture of experts (MoE)-based personalized LLM. Particularly, we integrate a Personality Specialization Loss (PSL) to better capture individual trait expressions, providing a more nuanced and psychologically grounded personality simulacrum. To facilitate research in this field, we curate OCEAN-Chat, a high-quality, human-verified dataset designed to train LLMs in expressing personality traits across diverse topics. Extensive experiments demonstrate the effectiveness of P-React in maintaining consistent and real personality.
Related papers
- SAC: A Framework for Measuring and Inducing Personality Traits in LLMs with Dynamic Intensity Control [1.9282110216621835]
Large language models (LLMs) have gained significant traction across a wide range of fields in recent years.<n>There is also a growing expectation for them to display human-like personalities during interactions.<n>Most existing models face two major limitations: they rely on the Big Five (OCEAN) framework, which only provides coarse personality dimensions, and they lack mechanisms for controlling trait intensity.
arXiv Detail & Related papers (2025-06-26T04:12:15Z) - A Comparative Study of Large Language Models and Human Personality Traits [6.354326674890978]
Large Language Models (LLMs) have demonstrated human-like capabilities in language comprehension and generation.<n>This study investigates whether LLMs exhibit personality-like traits and how these traits compare with human personality.
arXiv Detail & Related papers (2025-05-01T15:10:15Z) - Evaluating Personality Traits in Large Language Models: Insights from Psychological Questionnaires [3.6001840369062386]
This work applies psychological tools to Large Language Models in diverse scenarios to generate personality profiles.
Our findings reveal that LLMs exhibit unique traits, varying characteristics, and distinct personality profiles even within the same family of models.
arXiv Detail & Related papers (2025-02-07T16:12:52Z) - Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits [4.092862870428798]
We propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits.
Orca comprises four stages: Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores.
Our experiments demonstrate that our proposed model achieves superior performance on this benchmark.
arXiv Detail & Related papers (2024-11-15T07:35:47Z) - Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
arXiv Detail & Related papers (2024-10-16T07:47:45Z) - Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - Personality Alignment of Large Language Models [30.710131188931317]
Personality Alignment aims to align large language models with individual user preferences.
This dataset includes data from over 320,000 real subjects across multiple personality assessments.
We develop an activation intervention optimization method to efficiently align with individual behavioral preferences.
Our work paves the way for future AI systems to make decisions and reason in truly personality ways.
arXiv Detail & Related papers (2024-08-21T17:09:00Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
We propose to enhance role-playing language models (RPLMs) via personality-indicative data.
Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters.
Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.
arXiv Detail & Related papers (2024-06-27T06:24:00Z) - Is persona enough for personality? Using ChatGPT to reconstruct an agent's latent personality from simple descriptions [2.6080756513915824]
Personality, a fundamental aspect of human cognition, contains a range of traits that influence behaviors, thoughts, and emotions.
This paper explores the capabilities of large language models (LLMs) in reconstructing these complex cognitive attributes based only on simple descriptions containing socio-demographic and personality type information.
arXiv Detail & Related papers (2024-06-18T02:32:57Z) - Can AI Understand Human Personality? -- Comparing Human Experts and AI Systems at Predicting Personality Correlations [41.07853967415879]
We test the abilities of specialised deep neural networks like PersonalityMap as well as general LLMs like GPT-4o and Claude 3 Opus.
We find that when compared with individual humans, all AI models make better predictions than the vast majority of lay people and academic experts.
arXiv Detail & Related papers (2024-06-12T13:03:38Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - LLMs Simulate Big Five Personality Traits: Further Evidence [51.13560635563004]
We analyze the personality traits simulated by Llama2, GPT4, and Mixtral.
This contributes to the broader understanding of the capabilities of LLMs to simulate personality traits.
arXiv Detail & Related papers (2024-01-31T13:45:25Z) - AFSPP: Agent Framework for Shaping Preference and Personality with Large
Language Models [4.6251098692410855]
We propose Agent Framework for Shaping Preference and Personality (AFSPP)
AFSPP explores the multifaceted impact of social networks and subjective consciousness on Agents' preference and personality formation.
It can significantly enhance the efficiency and scope of psychological experiments.
arXiv Detail & Related papers (2024-01-05T15:52:59Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs)
We construct PersonalityEdit, a new benchmark dataset to address this task.
arXiv Detail & Related papers (2023-10-03T16:02:36Z) - PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits [30.770525830385637]
We study the behavior of large language models (LLMs) based on the Big Five personality model.
Results show that LLM personas' self-reported BFI scores are consistent with their designated personality types.
Human evaluation shows that humans can perceive some personality traits with an accuracy of up to 80%.
arXiv Detail & Related papers (2023-05-04T04:58:00Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
We investigate whether perceived personality in language models is exhibited consistently in their language generation.
We show that language models such as BERT and GPT2 can consistently identify and reflect personality markers in different contexts.
This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems.
arXiv Detail & Related papers (2022-12-20T14:24:11Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
We draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors.
To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors.
MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories.
We devise a Personality Prompting (P2) method to induce LLMs with specific personalities in a controllable way.
arXiv Detail & Related papers (2022-05-20T07:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.