Open-Set Semi-Supervised Learning for Long-Tailed Medical Datasets
- URL: http://arxiv.org/abs/2505.14846v1
- Date: Tue, 20 May 2025 19:21:38 GMT
- Title: Open-Set Semi-Supervised Learning for Long-Tailed Medical Datasets
- Authors: Daniya Najiha A. Kareem, Jean Lahoud, Mustansar Fiaz, Amandeep Kumar, Hisham Cholakkal,
- Abstract summary: Real-world generalization requires taking into account the various complexities that can be encountered in the real-world.<n>We propose an open-set learning method for highly imbalanced medical datasets using a semi-supervised approach.<n>Our analysis shows that addressing the impact of long-tail data in classification significantly improves the overall performance of the network.
- Score: 17.82752126823939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many practical medical imaging scenarios include categories that are under-represented but still crucial. The relevance of image recognition models to real-world applications lies in their ability to generalize to these rare classes as well as unseen classes. Real-world generalization requires taking into account the various complexities that can be encountered in the real-world. First, training data is highly imbalanced, which may lead to model exhibiting bias toward the more frequently represented classes. Moreover, real-world data may contain unseen classes that need to be identified, and model performance is affected by the data scarcity. While medical image recognition has been extensively addressed in the literature, current methods do not take into account all the intricacies in the real-world scenarios. To this end, we propose an open-set learning method for highly imbalanced medical datasets using a semi-supervised approach. Understanding the adverse impact of long-tail distribution at the inherent model characteristics, we implement a regularization strategy at the feature level complemented by a classifier normalization technique. We conduct extensive experiments on the publicly available datasets, ISIC2018, ISIC2019, and TissueMNIST with various numbers of labelled samples. Our analysis shows that addressing the impact of long-tail data in classification significantly improves the overall performance of the network in terms of closed-set and open-set accuracies on all datasets. Our code and trained models will be made publicly available at https://github.com/Daniyanaj/OpenLTR.
Related papers
- Iterative Misclassification Error Training (IMET): An Optimized Neural Network Training Technique for Image Classification [0.5115559623386964]
We introduce Iterative Misclassification Error Training (IMET), a novel framework inspired by curriculum learning and coreset selection.<n>IMET aims to identify misclassified samples in order to streamline the training process, while prioritizing the model's attention to edge case senarious and rare outcomes.<n>The paper evaluates IMET's performance on benchmark medical image classification datasets against state-of-the-art ResNet architectures.
arXiv Detail & Related papers (2025-07-01T04:14:16Z) - Enhancing Image Classification in Small and Unbalanced Datasets through Synthetic Data Augmentation [0.0]
This paper introduces a novel synthetic augmentation strategy using class-specific Variational Autoencoders (VAEs) and latent space to improve discrimination capabilities.
By generating realistic, varied synthetic data that fills feature space gaps, we address issues of data scarcity and class imbalance.
The proposed strategy was tested in a small dataset of 321 images created to train and validate an automatic method for assessing the quality of cleanliness of esophagogastroduodenoscopy images.
arXiv Detail & Related papers (2024-09-16T13:47:52Z) - Generalization in medical AI: a perspective on developing scalable models [2.6728181032975598]
A three-level scale is introduced to characterize out-of-distribution generalization performance of medical AI models.<n>This scale addresses the diversity of real-world medical scenarios as well as whether target domain data and labels are available for model recalibration.
arXiv Detail & Related papers (2023-11-09T14:54:28Z) - From Isolation to Collaboration: Federated Class-Heterogeneous Learning for Chest X-Ray Classification [4.0907576027258985]
Federated learning is a promising paradigm to collaboratively train a global chest x-ray (CXR) classification model.
We propose surgical aggregation, a FL method that uses selective aggregation to collaboratively train a global model.
Our results show that our method outperforms current methods and has better generalizability.
arXiv Detail & Related papers (2023-01-17T03:53:29Z) - Semi-supervised Deep Learning for Image Classification with Distribution
Mismatch: A Survey [1.5469452301122175]
Deep learning models rely on the abundance of labelled observations to train a prospective model.
It is expensive to gather labelled observations of data, making the usage of deep learning models not ideal.
In many situations different unlabelled data sources might be available.
This raises the risk of a significant distribution mismatch between the labelled and unlabelled datasets.
arXiv Detail & Related papers (2022-03-01T02:46:00Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
We present an open-world unlabeled data sampling framework called Model-Aware K-center (MAK)
MAK follows three simple principles: tailness, proximity, and diversity.
We demonstrate that MAK can consistently improve both the overall representation quality and the class balancedness of the learned features.
arXiv Detail & Related papers (2021-11-01T15:09:41Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - A Real Use Case of Semi-Supervised Learning for Mammogram Classification
in a Local Clinic of Costa Rica [0.5541644538483946]
Training a deep learning model requires a considerable amount of labeled images.
A number of publicly available datasets have been built with data from different hospitals and clinics.
The use of the semi-supervised deep learning approach known as MixMatch, to leverage the usage of unlabeled data is proposed and evaluated.
arXiv Detail & Related papers (2021-07-24T22:26:50Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition
from a Domain Adaptation Perspective [98.70226503904402]
Object frequency in the real world often follows a power law, leading to a mismatch between datasets with long-tailed class distributions.
We propose to augment the classic class-balanced learning by explicitly estimating the differences between the class-conditioned distributions with a meta-learning approach.
arXiv Detail & Related papers (2020-03-24T11:28:42Z) - Learning Cross-domain Generalizable Features by Representation
Disentanglement [11.74643883335152]
Deep learning models exhibit limited generalizability across different domains.
We propose Mutual-Information-based Disentangled Neural Networks (MIDNet) to extract generalizable features that enable transferring knowledge to unseen categorical features in target domains.
We demonstrate our method on handwritten digits datasets and a fetal ultrasound dataset for image classification tasks.
arXiv Detail & Related papers (2020-02-29T17:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.