Iterative Misclassification Error Training (IMET): An Optimized Neural Network Training Technique for Image Classification
- URL: http://arxiv.org/abs/2507.02979v1
- Date: Tue, 01 Jul 2025 04:14:16 GMT
- Title: Iterative Misclassification Error Training (IMET): An Optimized Neural Network Training Technique for Image Classification
- Authors: Ruhaan Singh, Sreelekha Guggilam,
- Abstract summary: We introduce Iterative Misclassification Error Training (IMET), a novel framework inspired by curriculum learning and coreset selection.<n>IMET aims to identify misclassified samples in order to streamline the training process, while prioritizing the model's attention to edge case senarious and rare outcomes.<n>The paper evaluates IMET's performance on benchmark medical image classification datasets against state-of-the-art ResNet architectures.
- Score: 0.5115559623386964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have proven to be effective on medical datasets for accurate diagnostic predictions from images. However, medical datasets often contain noisy, mislabeled, or poorly generalizable images, particularly for edge cases and anomalous outcomes. Additionally, high quality datasets are often small in sample size that can result in overfitting, where models memorize noise rather than learn generalizable patterns. This in particular, could pose serious risks in medical diagnostics where the risk associated with mis-classification can impact human life. Several data-efficient training strategies have emerged to address these constraints. In particular, coreset selection identifies compact subsets of the most representative samples, enabling training that approximates full-dataset performance while reducing computational overhead. On the other hand, curriculum learning relies on gradually increasing training difficulty and accelerating convergence. However, developing a generalizable difficulty ranking mechanism that works across diverse domains, datasets, and models while reducing the computational tasks and remains challenging. In this paper, we introduce Iterative Misclassification Error Training (IMET), a novel framework inspired by curriculum learning and coreset selection. The IMET approach is aimed to identify misclassified samples in order to streamline the training process, while prioritizing the model's attention to edge case senarious and rare outcomes. The paper evaluates IMET's performance on benchmark medical image classification datasets against state-of-the-art ResNet architectures. The results demonstrating IMET's potential for enhancing model robustness and accuracy in medical image analysis are also presented in the paper.
Related papers
- Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
We introduce a novel Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
arXiv Detail & Related papers (2024-04-18T00:18:07Z) - Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis.
Training such deep learning models requires large and accurate datasets, with annotations for all training samples.
To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning.
arXiv Detail & Related papers (2023-08-12T11:31:01Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
arXiv Detail & Related papers (2023-04-19T09:52:50Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.