論文の概要: Balanced and Elastic End-to-end Training of Dynamic LLMs
- arxiv url: http://arxiv.org/abs/2505.14864v1
- Date: Tue, 20 May 2025 19:52:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.724554
- Title: Balanced and Elastic End-to-end Training of Dynamic LLMs
- Title(参考訳): 動的LLMのバランスと弾力性
- Authors: Mohamed Wahib, Muhammed Abdullah Soyturk, Didem Unat,
- Abstract要約: 大規模分散トレーニングのための動的負荷分散ソリューションDynMoを提案する。
静的トレーニング法と比較して、DynMoはトレーニングを最大1.23x(MoEs)、3.18x(pruning)、2.23x(layer frozen)、4.02x(sparse attention)、4.52x(early exit)、1.17x(MoDs)まで加速する。
- 参考スコア(独自算出の注目度): 3.797598970261636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To reduce computational and memory costs in Large Language Models (LLMs), dynamic workload reduction schemes like Mixture of Experts (MoEs), parameter pruning, layer freezing, sparse attention, early token exit, and Mixture of Depths (MoDs) have emerged. However, these methods introduce severe workload imbalances, limiting their practicality for large-scale distributed training. We propose DynMo, an autonomous dynamic load balancing solution that ensures optimal compute distribution when using pipeline parallelism in training dynamic models. DynMo adaptively balances workloads, dynamically packs tasks into fewer workers to free idle resources, and supports both multi-GPU single-node and multi-node systems. Compared to static training methods (Megatron-LM, DeepSpeed), DynMo accelerates training by up to 1.23x (MoEs), 3.18x (pruning), 2.23x (layer freezing), 4.02x (sparse attention), 4.52x (early exit), and 1.17x (MoDs). DynMo is available at https://anonymous.4open.science/r/DynMo-4D04/.
- Abstract(参考訳): LLM(Large Language Models)の計算とメモリコストを削減するため、Mixture of Experts(MoEs)、パラメータプルニング、レイヤ凍結、スパースアテンション、早期トークンエグジット、Mixture of Depths(MoDs)などの動的ワークロード削減スキームが登場した。
しかし,これらの手法では作業負荷の不均衡が生じ,大規模分散トレーニングの実践性が制限される。
我々は,動的モデルのトレーニングにおいてパイプライン並列性を使用する際の最適計算分布を保証する自律動的負荷分散ソリューションDynMoを提案する。
DynMoはワークロードを適応的にバランスさせ、動的にタスクを少ないワーカにまとめてアイドルリソースを解放し、マルチGPUシングルノードシステムとマルチノードシステムの両方をサポートする。
静的トレーニング法(Megatron-LM、DeepSpeed)と比較して、DynMoはトレーニングを最大1.23x(MoEs)、3.18x(pruning)、2.23x(layer frozen)、4.02x(sparse attention)、4.52x(early exit)、1.17x(MoDs)で加速する。
DynMoはhttps://anonymous.4open.science/r/DynMo-4D04/で入手できる。
関連論文リスト
- AutoHete: An Automatic and Efficient Heterogeneous Training System for LLMs [68.99086112477565]
トランスフォーマーベースの大規模言語モデル(LLM)は、シーケンスモデリングやテキスト生成において例外的な機能を示した。
既存の異種トレーニング手法は、トレーニング可能なモデルの規模を大幅に拡大するが、かなりの通信オーバーヘッドとCPUワークロードを導入している。
本稿では,シングルGPU環境とマルチGPU環境の両方に互換性のある,自動的で効率的なヘテロジニアストレーニングシステムであるAutoHeteを提案する。
論文 参考訳(メタデータ) (2025-02-27T14:46:22Z) - Muon is Scalable for LLM Training [50.68746986439438]
MoE(Mixture-of-Expert)モデルであるMoonlightを紹介する。
我々のモデルは現在のフロンティアを改善し、以前のモデルに比べてトレーニングのFLOPをはるかに少なくして、より良いパフォーマンスを実現しています。
メモリ最適化と通信効率のよい分散 Muon 実装をオープンソースとして公開しています。
論文 参考訳(メタデータ) (2025-02-24T09:12:29Z) - FSMoE: A Flexible and Scalable Training System for Sparse Mixture-of-Experts Models [21.96960353910023]
3つの新しい手法でタスクスケジューリングを最適化するフレキシブルなトレーニングシステムFSMoEを紹介する。
我々は、2つのGPUクラスタ上で、構成されたMoE層と実世界のMoEモデルで広範な実験を行う。
FSMoEは4種類のMoEルーティング機能をサポートしており、既存の実装よりも効率的である。
論文 参考訳(メタデータ) (2025-01-18T10:14:37Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,既存の並列処理方式を超越したMoE用パイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法と比較して,プリフィルスループットは52.4%向上した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - Dense Training, Sparse Inference: Rethinking Training of Mixture-of-Experts Language Models [62.4691912312317]
Mixture-of-Experts (MoE)言語モデルは、性能を犠牲にすることなく、高密度モデルと比較して計算コストを2~4ドル削減することができる。
本稿では,強力な計算とパラメータ効率を実現するMOEモデル(DS-MoE)のためのハイブリッド密集型トレーニングおよびスパース推論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-08T14:39:49Z) - FlexMoE: Scaling Large-scale Sparse Pre-trained Model Training via
Dynamic Device Placement [19.639936387834677]
Mixture-of-Experts (MoEs) は、様々なダウンストリームタスクにおいて、優れた事前トレーニングのスケーラビリティを示している。
MoEはデータライフサイクルにおける新たなデータ分析パラダイムになりつつある。
本稿では,動的データフローによる非効率性に対して系統的かつ透過的に対処する新しいDNNトレーニングフレームワークFlexMoEを提案する。
論文 参考訳(メタデータ) (2023-04-08T07:34:26Z) - Towards MoE Deployment: Mitigating Inefficiencies in Mixture-of-Expert
(MoE) Inference [7.743308058511418]
言語モデリング(LM)と機械翻訳(MT)という2つのMoEワークロードの特徴を提供する。
本研究では,(1)動的ゲーティング,(2)エキスパートバッファリング,(3)エキスパートロードバランシングの3つの最適化手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T19:30:15Z) - MoESys: A Distributed and Efficient Mixture-of-Experts Training and Inference System for Internet Services [32.278096820269816]
大規模トレーニングと推論の両方において効率を高める新しいMoESysを提案する。
具体的には、トレーニング手順において、提案されたMoESysは、階層ストレージ上の2Dプリフェッチとフュージョン通信を備えたElastic MoEトレーニング戦略を採用する。
単一ノードでのスケーラブルな推論のために、MoESysはCPU-GPUメモリを、モデルをロードするセクションのリングに共同で構築し、効率的な推論のためにラウンドロビン方式でメモリセクション全体で計算タスクを実行する。
論文 参考訳(メタデータ) (2022-05-20T09:09:27Z) - Dynamic Multi-Branch Layers for On-Device Neural Machine Translation [53.637479651600586]
動的マルチブランチ層を用いたオンデバイスニューラルマシン翻訳(NMT)システムの性能向上を提案する。
具体的には、トレーニングと推論中に1つの分岐のみを活性化した層方向動的マルチブランチネットワークを設計する。
ほぼ同じ計算コストで、WMT14英語-ドイツ語翻訳タスクでは最大1.7 BLEUポイント、WMT20中国語-英語翻訳タスクでは1.8 BLEUポイントの改善を実現します。
論文 参考訳(メタデータ) (2021-05-14T07:32:53Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
冗長な再計算とアウト・オブ・コアの手法を組み合わせた戦略を提案する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
論文 参考訳(メタデータ) (2020-08-26T07:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。